Nuti Silvia, Fernández-Lodeiro Adrián, Galhano Joana, Oliveira Elisabete, Duarte Maria Paula, Capelo-Martínez José Luis, Lodeiro Carlos, Fernández-Lodeiro Javier
BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
PROTEOMASS Scientific Society, Praceta Jeronimo Dias, Num. 12, 2A, Sto Antonio de Caparica, 2825-466 Costa de Caparica, Portugal.
Nanomaterials (Basel). 2024 Mar 2;14(5):462. doi: 10.3390/nano14050462.
The global increase in multidrug-resistant bacteria poses a challenge to public health and requires the development of new antibacterial materials. In this study, we examined the bactericidal properties of mesoporous silica-coated silver nanoparticles, varying the core sizes (ca. 28 nm and 51 nm). We also investigated gold nanoparticles (ca. 26 nm) coated with mesoporous silica as possible inert metal cores. To investigate the modification of antimicrobial activity after the surface charge change, we used silver nanoparticles with a silver core of 28 nm coated with a mesoporous shell (ca. 16 nm) and functionalized with a terminal amine group. Furthermore, we developed a facile method to create mesoporous silica-coated silver nanoparticles (Ag@mSiO) doped films using polyurethane (IROGRAN) as a polymer matrix via solution casting. The antibacterial effects of silver nanoparticles with different core sizes were analyzed against Gram-negative and Gram-positive bacteria relevant to the healthcare and food industry. The results demonstrated that gold nanoparticles were inert, while silver nanoparticles exhibited antibacterial effects against Gram-negative ( and subsp. serovar Choleraesuis) and Gram-positive () strains. In particular, the larger Ag@mSiO nanoparticles showed a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 18 µg/mL in the strain. Furthermore, upon terminal amine functionalization, reversing the surface charge to positive values, there was a significant increase in the antibacterial activity of the NPs compared to their negative counterparts. Finally, the antimicrobial properties of the nanoparticle-doped polyurethane films revealed a substantial improvement in antibacterial efficacy. This study provides valuable information on the potential of mesoporous silica-coated silver nanoparticles and their applications in fighting multidrug-resistant bacteria, especially in the healthcare and food industries.
全球耐多药细菌的增加对公共卫生构成挑战,需要开发新的抗菌材料。在本研究中,我们研究了介孔二氧化硅包覆的银纳米颗粒的杀菌性能,改变了核尺寸(约28纳米和51纳米)。我们还研究了包覆有介孔二氧化硅的金纳米颗粒(约26纳米)作为可能的惰性金属核。为了研究表面电荷改变后抗菌活性的变化,我们使用了核为28纳米、包覆有介孔壳(约16纳米)并通过末端胺基功能化的银纳米颗粒。此外,我们开发了一种简便的方法,通过溶液浇铸使用聚氨酯(IROGRAN)作为聚合物基质来制备介孔二氧化硅包覆的银纳米颗粒(Ag@mSiO)掺杂薄膜。分析了不同核尺寸的银纳米颗粒对与医疗保健和食品工业相关的革兰氏阴性菌和革兰氏阳性菌的抗菌效果。结果表明,金纳米颗粒是惰性的,而银纳米颗粒对革兰氏阴性菌(和亚种猪霍乱血清型)和革兰氏阳性菌()菌株表现出抗菌效果。特别是,较大的Ag@mSiO纳米颗粒在菌株中的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)为18μg/mL。此外,通过末端胺功能化,将表面电荷反转到正值,与带负电荷的对应物相比,纳米颗粒的抗菌活性显著增加。最后,纳米颗粒掺杂聚氨酯薄膜的抗菌性能显示出抗菌效果的显著改善。本研究提供了关于介孔二氧化硅包覆银纳米颗粒的潜力及其在对抗耐多药细菌方面的应用的有价值信息,特别是在医疗保健和食品工业中。
J Colloid Interface Sci. 2019-8-3
Nanomaterials (Basel). 2023-10-18
Nanomaterials (Basel). 2021-2-22
Nanomaterials (Basel). 2025-5-3
Nanomaterials (Basel). 2023-10-18
J Funct Biomater. 2023-4-26
Braz J Microbiol. 2023-3
J Inorg Biochem. 2022-12
J Nanobiotechnology. 2022-8-23
Int J Mol Sci. 2021-7-4