Suppr超能文献

利用碱基编辑对益生菌Nissle 1917进行精准工程改造。

Precision engineering of the probiotic Nissle 1917 with prime editing.

作者信息

Chen Pei-Ru, Wei Ying, Li Xin, Yu Hai-Yan, Wang Shu-Guang, Yuan Xian-Zheng, Xia Peng-Fei

机构信息

School of Environmental Science and Engineering, Shandong University, Qingdao, China.

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.

出版信息

Appl Environ Microbiol. 2025 Feb 19;91(2):e0003125. doi: 10.1128/aem.00031-25. Epub 2025 Jan 31.

Abstract

CRISPR-Cas systems are transforming precision medicine with engineered probiotics as next-generation diagnostics and therapeutics. To promote human health and treat disease, engineering probiotic bacteria demands maximal versatility to enable non-natural functionalities while minimizing undesired genomic interferences. Here, we present a streamlined prime editing approach tailored for probiotic Nissle 1917 utilizing only essential genetic modules, including Cas9 nickase from , a codon-optimized reverse transcriptase, and a prime editing guide RNA, and an optimized workflow with longer induction. As a result, we achieved all types of prime editing in every individual round of experiments with efficiencies of 25.0%, 52.0%, and 66.7% for DNA deletion, insertion, and substitution, respectively. A comprehensive evaluation of off-target effects revealed a significant reduction in unintended mutations, particularly in comparison to two different base editing methods. Leveraging the prime editing system, we inserted a unique DNA sequence to barcode the edited strain and established an antibiotic-resistance-gene-free platform to enable non-natural functionalities. Our prime editing strategy presents a CRISPR-Cas system that can be readily implemented in any laboratories with the basic CRISPR setups, paving the way for future innovations in engineered probiotics.IMPORTANCEOne ultimate goal of gene editing is to introduce designed DNA variations at specific loci in living organisms with minimal unintended interferences in the genome. Achieving this goal is especially critical for creating engineered probiotics as living diagnostics and therapeutics to promote human health and treat diseases. In this endeavor, we report a customized prime editing system for precision engineering of probiotic Nissle 1917. With such a system, we developed a barcoding system for tracking engineered strains, and we built an antibiotic-resistance-gene-free platform to enable non-natural functionalities. We provide not only a powerful gene editing approach for probiotic bacteria but also new insights into the advancement of innovative CRISPR-Cas systems.

摘要

CRISPR-Cas系统正在通过工程益生菌作为下一代诊断和治疗手段来变革精准医学。为了促进人类健康和治疗疾病,对益生菌进行工程改造需要具备最大的通用性,以实现非天然功能,同时尽量减少不必要的基因组干扰。在此,我们提出了一种简化的碱基编辑方法,专为益生菌Nissle 1917量身定制,该方法仅使用必需的遗传模块,包括来自的Cas9切口酶、密码子优化的逆转录酶、一个碱基编辑引导RNA,以及经过优化的更长诱导时间的工作流程。结果,我们在每一轮实验中都实现了所有类型的碱基编辑,DNA缺失、插入和替换的效率分别为25.0%、52.0%和66.7%。对脱靶效应的全面评估显示,意外突变显著减少,特别是与两种不同的碱基编辑方法相比。利用碱基编辑系统,我们插入了一个独特的DNA序列来对编辑后的菌株进行条形码标记,并建立了一个无抗生素抗性基因的平台以实现非天然功能。我们的碱基编辑策略提出了一种CRISPR-Cas系统,该系统可以在任何具备基本CRISPR设置的实验室中轻松实施,为工程益生菌的未来创新铺平了道路。重要性基因编辑的一个最终目标是在活生物体的特定位点引入设计好的DNA变异,同时尽量减少对基因组的意外干扰。对于创建作为活诊断和治疗手段以促进人类健康和治疗疾病的工程益生菌而言,实现这一目标尤为关键。在这项工作中,我们报告了一种用于益生菌Nissle 1917精准工程改造的定制碱基编辑系统。借助这样一个系统,我们开发了一种用于追踪工程菌株的条形码标记系统,并构建了一个无抗生素抗性基因的平台以实现非天然功能。我们不仅为益生菌提供了一种强大的基因编辑方法,还为创新型CRISPR-Cas系统的发展提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/443c/11837520/dac0c59d94a2/aem.00031-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验