文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用合成生物学和代谢工具对肠道微生物群进行治疗性工程改造:以大肠杆菌Nissle 1917为模型案例研究的全面综述

Therapeutic engineering of the gut microbiome using synthetic biology and metabolic tools: a comprehensive review with E. coli Nissle 1917 as a model case study.

作者信息

Sadhu Soumok, Paul Tania, Yadav Nishant

机构信息

Department of Veterinary Sciences and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA.

Department of Medicine, Medical School, University of Minnesota, Minneapolis, USA.

出版信息

Arch Microbiol. 2025 Aug 6;207(9):213. doi: 10.1007/s00203-025-04417-w.


DOI:10.1007/s00203-025-04417-w
PMID:40767874
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12328466/
Abstract

The human gut microbiome significantly influences host physiology, metabolism, and immune function. The engineering of microbial communities represents a significant advancement in contemporary biotechnology. Conventional methods, including Fecal Microbiota Transplantation (FMT) and probiotic administration, exhibit limitations in efficacy and raise safety and reproducibility concerns; however, they have shown potential therapeutic benefits. Recent progress in biocatalysis and metabolic engineering has led to the development of genetically tractable gut bacteria for targeted therapeutic purposes, particularly in the last five years. This chapter offers an overview of the development of microbiota-based interventions, from early recombinant probiotics to advanced synthetic biology platforms that can detect and respond to host and environmental signals. This analysis examines the mechanistic aspects of enzyme engineering, including improvements in metabolic pathways for the production of short-chain fatty acids, the breakdown of harmful metabolites, and the biosynthesis of immunomodulatory compounds. This review also examines conditions including inflammatory bowel disease, metabolic dysfunction, and colorectal cancer, highlighting microbial production systems pertinent to gut health. The engineering of Escherichia coli Nissle 1917 to produce phenylalanine ammonia-lyase (PAL) and L-amino acid deaminase (LAAD) represents a significant advancement in gut-based metabolic intervention for patients with phenylketonuria (PKU) by degrading excess phenylalanine. Recent studies offer peer-reviewed evidence supporting the translational potential of these inventions, as demonstrated through figures and tables highlighting engineered metabolic circuits, therapeutic outputs, and strain performance metrics. This combination of developments demonstrates the potential of synthetic microbiome engineering to provide precision biotherapeutics for various gut-related conditions.

摘要

人类肠道微生物群对宿主生理、代谢和免疫功能有显著影响。微生物群落工程是当代生物技术的一项重大进展。包括粪便微生物群移植(FMT)和益生菌给药在内的传统方法在疗效上存在局限性,并引发了安全性和可重复性方面的担忧;然而,它们已显示出潜在的治疗益处。生物催化和代谢工程的最新进展已促成了用于靶向治疗目的的可遗传操作的肠道细菌的开发,尤其是在过去五年中。本章概述了基于微生物群的干预措施的发展,从早期的重组益生菌到能够检测并响应宿主和环境信号的先进合成生物学平台。该分析研究了酶工程的机制方面,包括短链脂肪酸生产代谢途径的改进、有害代谢物的分解以及免疫调节化合物的生物合成。本综述还研究了包括炎症性肠病、代谢功能障碍和结直肠癌在内的病症,突出了与肠道健康相关的微生物生产系统。对大肠杆菌Nissle 1917进行工程改造以生产苯丙氨酸解氨酶(PAL)和L-氨基酸脱氨酶(LAAD),通过降解过量苯丙氨酸,在苯丙酮尿症(PKU)患者的肠道代谢干预方面取得了重大进展。最近的研究提供了经过同行评审的证据,支持这些发明的转化潜力,通过图表突出了工程化代谢回路、治疗效果和菌株性能指标来证明。这些进展的结合证明了合成微生物群工程为各种肠道相关病症提供精准生物疗法的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/42f9a7b8a8c6/203_2025_4417_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/296d0afb3b9f/203_2025_4417_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/c7793f66cbb0/203_2025_4417_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/d832732b0211/203_2025_4417_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/42f92d52098b/203_2025_4417_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/42f9a7b8a8c6/203_2025_4417_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/296d0afb3b9f/203_2025_4417_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/c7793f66cbb0/203_2025_4417_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/d832732b0211/203_2025_4417_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/42f92d52098b/203_2025_4417_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/12328466/42f9a7b8a8c6/203_2025_4417_Fig5_HTML.jpg

相似文献

[1]
Therapeutic engineering of the gut microbiome using synthetic biology and metabolic tools: a comprehensive review with E. coli Nissle 1917 as a model case study.

Arch Microbiol. 2025-8-6

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Synthetic biology approaches for restoring gut microbial balance and engineering disease-specific microbiome therapeutics.

Microb Pathog. 2025-10

[4]
Gut microbiome-based interventions for the management of obesity in children and adolescents aged up to 19 years.

Cochrane Database Syst Rev. 2025-7-10

[5]
Synbiotics, prebiotics and probiotics for solid organ transplant recipients.

Cochrane Database Syst Rev. 2022-9-20

[6]
Exploring the gut microbiome's influence on cancer-associated anemia: Mechanisms, clinical challenges, and innovative therapies.

World J Gastrointest Pharmacol Ther. 2025-6-5

[7]
Impact of an abrupt change from dry to canned diet on digestive function and gut microbiota in dogs.

J Anim Sci. 2025-1-4

[8]
Gut Microbiota-Targeted Therapeutics for Metabolic Disorders: Mechanistic Insights into the Synergy of Probiotic-Fermented Herbal Bioactives.

Int J Mol Sci. 2025-6-7

[9]
Effects of supplementation of live and heat-treated Bifidobacterium animalis subspecies lactis CECT 8145 on glycemic and insulinemic response, fecal microbiota, systemic biomarkers of inflammation, and white blood cell gene expression of adult dogs.

J Anim Sci. 2024-1-3

[10]
Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.

World J Gastroenterol. 2014-11-14

本文引用的文献

[1]
Precision engineering of the probiotic Nissle 1917 with prime editing.

Appl Environ Microbiol. 2025-2-19

[2]
A molecular toolkit for heterologous protein secretion across Bacteroides species.

Nat Commun. 2024-11-11

[3]
Advancements in gene editing technologies for probiotic-enabled disease therapy.

iScience. 2024-8-22

[4]
In situ targeted base editing of bacteria in the mouse gut.

Nature. 2024-8

[5]
Promising dawn in tumor microenvironment therapy: engineering oral bacteria.

Int J Oral Sci. 2024-3-13

[6]
Genetically Engineered Probiotic Releasing IL-22 (LR-IL-22) Modifies the Tumor Microenvironment, Enabling Irradiation in Ovarian Cancer.

Cancers (Basel). 2024-1-23

[7]
Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia.

Nat Commun. 2024-1-20

[8]
Efficient production of an antitumor precursor actinocin and other medicinal molecules from kynurenine pathway in Escherichia coli.

Metab Eng. 2024-1

[9]
CRISPR-Cas-Based Engineering of Probiotics.

Biodes Res. 2023-9-29

[10]
The potential use of bacteria and bacterial derivatives as drug delivery systems for viral infection.

Virol J. 2023-10-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索