Kawanishi S, Caughey W S
J Biol Chem. 1985 Apr 25;260(8):4622-31.
Reactions of human oxyhemoglobin A with iron(II) compounds have been investigated. Human oxyhemoglobin (HbO2) reacts with aquopentacyanoferrate(II), Fe(II)(CN)5H2O3-, to yield hydrogen peroxide, aquomethemoglobin and Fe(III)(CN)5H2O2-. The reaction follows a second order rate law, first order in the pentacyanide and in HbO2. Since reaction rates are lower in the presence of catalase, the H2O2 produced must promote metHb formation in reactions independent of pentacyanide. Changes in concentrations of effectors (e.g. H+, inositol hexaphosphate, Cl-, and Zn2+), alkylation of beta-93 cysteine with N-ethylmaleimide, and substitution at distal histidine (as in Hb Zurich with beta-63 His----Arg) in each case can markedly affect pentacyanide reaction rates demonstrating a fine control of rates by protein structure. Hexacyanoferrate(II) (ferrocyanide) reacts with HbO2 to produce cyano-metHb as well as aquo-metHb but the reaction with the hexacyanide is much slower than with the aquopentacyanide. Iron(II) EDTA converts HbO2 to deoxy-Hb with no evidence for formation of metHb as an intermediate. These findings support a mechanism in which the pentacyanide anion reacts directly with coordinated dioxygen. One-electron transfers to O2 from both pentacyanide iron(II) and heme iron(II) result in the formation of a mu-peroxo intermediate, HbFe(III)-O-O-Fe(III) (CN)5(3-). Hydrolysis of this intermediate yields metHb . H2O, H2O2, and FeIII(CN)5H2O2-. The reaction of HbO2 with Fe(CN)6(4-) must follow an outer sphere electron transfer mechanism. However, the very slow rate that is seen with Fe(CN)6(4-) could arise entirely from the pentacyanide produced from loss of one cyanide ligand from the hexacyanide. Fe(II)EDTA reacts rapidly with free O2 in solution but can not interact directly with the heme-bound O2 of HbAO2. The dynamic character of the O2 binding sites apparently permits access of the Fe2+ of the pentacyanide to coordinated dioxygen but the protein structure is not sufficiently flexible to allow the larger Fe2+EDTA molecule to react with bound O2. It is necessary for maintenance of the oxygen transport function of the red cell for reductants such as the methemoglobin reductase system, glutathione, and ascorbate to be able to reduce metHb to deoxy-Hb. It is also important for these reductants to be unable to donate an electron to HbO2 to yield H2O2 and metHb. Thus, a mechanistic requirement for the delivery of one-electron directly to the dioxygen ligand, if peroxide is to be produced, enables the protein to protect the oxygenated species from those electron donors normally present in the cell by denying these reductants steric access to coordinated O2.(ABSTRACT TRUNCATED AT 400 WORDS)
已对人氧合血红蛋白A与铁(II)化合物的反应进行了研究。人氧合血红蛋白(HbO₂)与五氰合铁(II)酸根,即Fe(II)(CN)₅H₂O³⁻反应,生成过氧化氢、高铁血红蛋白和Fe(III)(CN)₅H₂O²⁻。该反应遵循二级速率定律,对五氰合铁(II)酸根和HbO₂均为一级反应。由于在过氧化氢酶存在下反应速率较低,因此生成的H₂O₂必定在与五氰合铁(II)酸根无关的反应中促进高铁血红蛋白的形成。效应物(如H⁺、肌醇六磷酸、Cl⁻和Zn²⁺)浓度的变化、用N - 乙基马来酰亚胺对β - 93位半胱氨酸的烷基化以及在远端组氨酸处的取代(如在苏黎世血红蛋白中β - 63位组氨酸被精氨酸取代),在每种情况下都能显著影响五氰合铁(II)酸根的反应速率,这表明蛋白质结构对反应速率有精细调控。六氰合铁(II)酸钾(亚铁氰化物)与HbO₂反应生成氰化高铁血红蛋白以及水合高铁血红蛋白,但与六氰合铁(II)酸钾的反应比与五氰合铁(II)酸根的反应慢得多。铁(II)乙二胺四乙酸将HbO₂转化为脱氧血红蛋白,没有证据表明有高铁血红蛋白作为中间产物形成。这些发现支持了一种机制,即五氰合铁(II)酸根阴离子直接与配位的双氧反应。从五氰合铁(II)酸根铁和血红素铁(II)向O₂的单电子转移导致形成μ - 过氧中间体,即HbFe(III)-O-O-Fe(III)(CN)₅(3⁻)。该中间体的水解产生高铁血红蛋白、H₂O、H₂O₂和FeIII(CN)₅H₂O²⁻。HbO₂与Fe(CN)₆(4⁻)的反应必定遵循外层电子转移机制。然而,观察到的Fe(CN)₆(4⁻)反应速率非常慢,可能完全是由于六氰合铁(II)酸钾失去一个氰化物配体产生的五氰合铁(II)酸根导致的。铁(II)乙二胺四乙酸能迅速与溶液中的游离O₂反应,但不能直接与HbAO₂的血红素结合的O₂相互作用。O₂结合位点的动态特性显然允许五氰合铁(II)酸根的Fe²⁺接近配位的双氧,但蛋白质结构的灵活性不足以允许更大的铁(II)乙二胺四乙酸分子与结合的O₂反应。对于维持红细胞的氧运输功能而言,诸如高铁血红蛋白还原酶系统、谷胱甘肽和抗坏血酸等还原剂能够将高铁血红蛋白还原为脱氧血红蛋白是必要的。同样重要的是,这些还原剂不能向HbO₂提供电子以生成H₂O₂和高铁血红蛋白。因此,如果要产生过氧化物,将单电子直接传递给双氧配体的机制要求使得蛋白质能够通过阻止这些还原剂与配位的O₂有空间接触来保护氧化态物质免受细胞中通常存在的那些电子供体的影响。(摘要截选至400字)