Suppr超能文献

用于多层图嵌入与分析的垂直忆阻交叉阵列

Vertical Memristive Crossbar Array for Multilayer Graph Embedding and Analysis.

作者信息

Han Janguk, Jang Yoon Ho, Moon Ji Won, Shim Sung Keun, Cheong Sunwoo, Lee Soo Hyung, Park Tae Won, Han Joon-Kyu, Hwang Cheol Seong

机构信息

Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

System Semiconductor Engineering and Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.

出版信息

Adv Mater. 2025 Mar;37(10):e2416988. doi: 10.1002/adma.202416988. Epub 2025 Jan 29.

Abstract

Graph data structures effectively represent objects and their relationships, enabling the modeling of complex connections in various fields. Recent work demonstrate that metal at diagonal crossbar arrays (m-CBA) can effectively represent planar graphs. However, they are unsuitable for representing multilayer graphs having multiple relationships across different layers. Using conventional software, embedding multilayer graphs in high-dimensional Euclidean spaces introduces significant mathematical complexity and computational burden, often resulting in information loss. This study proposes a unique graph embedding (mapping) method utilizing a fabricated vertical m-CBA (vm-CBA), where a custom-built measurement system thoroughly validated its functionality. This structure directly maps multilayer graphs into a 3D vm-CBA, accurately representing inter-layer and intra-layer connections. The practical link prediction and information scores across various real-world datasets demonstrated that vm-CBA achieved enhanced accuracy compared to conventional embeddings, even with a significantly decreased number of operations.

摘要

图数据结构能有效地表示对象及其关系,从而能够对各个领域中的复杂连接进行建模。最近的研究表明,对角交叉bar阵列中的金属(m-CBA)能够有效地表示平面图。然而,它们不适用于表示具有跨不同层的多重关系的多层图。使用传统软件将多层图嵌入高维欧几里得空间会带来显著的数学复杂性和计算负担,常常导致信息丢失。本研究提出了一种独特的图嵌入(映射)方法,该方法利用了一种制造的垂直m-CBA(vm-CBA),其中一个定制的测量系统全面验证了其功能。这种结构直接将多层图映射到三维vm-CBA中,准确地表示层间和层内连接。在各种真实世界数据集上进行的实际链路预测和信息评分表明,即使操作数量显著减少,vm-CBA与传统嵌入方法相比仍实现了更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e678/11899525/e1e252a9e7dc/ADMA-37-2416988-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验