Suppr超能文献

基于常曲率流形上的图嵌入学习的图流中的变化检测。

Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Jun;31(6):1856-1869. doi: 10.1109/TNNLS.2019.2927301. Epub 2019 Jul 30.

Abstract

The space of graphs is often characterized by a nontrivial geometry, which complicates learning and inference in practical applications. A common approach is to use embedding techniques to represent graphs as points in a conventional Euclidean space, but non-Euclidean spaces have often been shown to be better suited for embedding graphs. Among these, constant-curvature Riemannian manifolds (CCMs) offer embedding spaces suitable for studying the statistical properties of a graph distribution, as they provide ways to easily compute metric geodesic distances. In this paper, we focus on the problem of detecting changes in stationarity in a stream of attributed graphs. To this end, we introduce a novel change detection framework based on neural networks and CCMs, which takes into account the non-Euclidean nature of graphs. Our contribution in this paper is twofold. First, via a novel approach based on adversarial learning, we compute graph embeddings by training an autoencoder to represent graphs on CCMs. Second, we introduce two novel change detection tests operating on CCMs. We perform experiments on synthetic data, as well as two real-world application scenarios: the detection of epileptic seizures using functional connectivity brain networks and the detection of hostility between two subjects, using human skeletal graphs. Results show that the proposed methods are able to detect even small changes in a graph-generating process, consistently outperforming approaches based on Euclidean embeddings.

摘要

图的空间通常具有复杂的几何结构,这使得在实际应用中学习和推理变得复杂。一种常见的方法是使用嵌入技术将图表示为常规欧几里得空间中的点,但已经证明非欧几里得空间更适合嵌入图。在这些空间中,常曲率黎曼流形 (CCM) 提供了适合研究图分布统计特性的嵌入空间,因为它们提供了计算度量测地线距离的简便方法。在本文中,我们专注于检测属性图流中平稳性变化的问题。为此,我们引入了一种基于神经网络和 CCM 的新颖的变化检测框架,该框架考虑了图的非欧几里得性质。我们在本文中的贡献有两点。首先,通过基于对抗学习的新方法,我们通过训练自动编码器来在 CCM 上表示图来计算图嵌入。其次,我们引入了两种在 CCM 上运行的新颖的变化检测测试。我们在合成数据以及两个实际应用场景上进行了实验:使用功能连通性脑网络检测癫痫发作,以及使用人类骨骼图检测两个主体之间的敌意。结果表明,所提出的方法能够检测到图生成过程中的微小变化,始终优于基于欧几里得嵌入的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验