Suppr超能文献

基于贝叶斯优化的全局最小值与锥形交叉点探索

Exploration of the Global Minimum and Conical Intersection with Bayesian Optimization.

作者信息

Somaki Riho, Inagaki Taichi, Hatanaka Miho

机构信息

Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.

Institute for Molecular Science, 38 NishigoNaka, Myodaiji, Okazaki, 444-8585, Japan.

出版信息

Mol Inform. 2025 Feb;44(2):e202400041. doi: 10.1002/minf.202400041.

Abstract

Conventional molecular geometry searches on a potential energy surface (PES) utilize energy gradients from quantum chemical calculations. However, replacing energy calculations with noisy quantum computer measurements generates errors in the energies, which makes geometry optimization using the energy gradient difficult. One gradient-free optimization method that can potentially solve this problem is Bayesian optimization (BO). To use BO in geometry search, an acquisition function (AF), which involves an objective variable, must be defined suitably. In this study, we propose a strategy for geometry searches using BO and examine the appropriate AFs to explore two critical structures: the global minimum (GM) on the singlet ground state (S) and the most stable conical intersection (CI) point between S and the singlet excited state. We applied our strategy to two molecules and located the GM and the most stable CI geometries with high accuracy for both molecules. We also succeeded in the geometry searches even when artificial random noises were added to the energies to simulate geometry optimization using noisy quantum computer measurements.

摘要

在势能面(PES)上进行的传统分子几何结构搜索利用量子化学计算得到的能量梯度。然而,用有噪声的量子计算机测量取代能量计算会在能量中产生误差,这使得利用能量梯度进行几何结构优化变得困难。一种有可能解决这个问题的无梯度优化方法是贝叶斯优化(BO)。要在几何结构搜索中使用BO,必须适当地定义一个涉及目标变量的采集函数(AF)。在本研究中,我们提出了一种使用BO进行几何结构搜索的策略,并研究了合适的AF,以探索两个关键结构:单重态基态(S)上的全局最小值(GM)以及S与单重态激发态之间最稳定的锥形交叉点(CI)。我们将我们的策略应用于两个分子,并高精度地确定了两个分子的GM和最稳定的CI几何结构。即使在能量中添加人工随机噪声以模拟使用有噪声的量子计算机测量进行几何结构优化时,我们也成功地完成了几何结构搜索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验