Padhi Diptymayee, Kashyap Shatakshi, Mohapatra Ranjan Kumar, Dineshkumar Ramalingam, Nayak Manoranjan
Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea.
Environ Sci Pollut Res Int. 2025 May;32(23):13539-13565. doi: 10.1007/s11356-025-35958-8. Epub 2025 Jan 31.
Anthropogenic CO emissions are the prime cause of global warming and climate change, promoting researchers to develop suitable technologies to reduce carbon footprints. Among various CO sequestration technologies, microalgal-based methods are found to be promising due to their easier operation, environmental benefits, and simpler equipment requirements. Microalgae-based carbon capture and storage (CCS) technology is essential for addressing challenges related to the use of industrial-emitted flue gases. This review focuses on the literature concerning the microalgal application for CO sequestration. It highlights the primary physiochemical parameters that affect microalgal-based CO biofixation, including light exposure, microalgal strain, temperature, inoculum size, pH levels, mass transfer, CO concentration, flow rate, cultivation system, and mixing mechanisms. Moreover, the inhibition effect of different flue gas components including NO, SO, and Hg on growth kinetics is discussed to enhance the capacity of microalgal-based CO biofixation, along with deliberated challenges and prospects for future development. Overall, the review indicated microalgal-based flue gas CO fixation rates range from 80 mg L day to over 578 mg L day, primarily influenced by physiochemical parameters and flue gas composition. This article summarizes the mechanisms and stages of microalgal-based CO sequestration and provides a comprehensive review based on international interest in this green technology.
人为二氧化碳排放是全球变暖和气候变化的主要原因,促使研究人员开发合适的技术来减少碳足迹。在各种碳封存技术中,基于微藻的方法因其操作简便、环境效益好和设备要求简单而被认为具有前景。基于微藻的碳捕获与封存(CCS)技术对于应对与工业排放烟气利用相关的挑战至关重要。本综述聚焦于有关微藻在碳封存方面应用的文献。它突出了影响基于微藻的二氧化碳生物固定的主要物理化学参数,包括光照、微藻菌株、温度、接种量、pH值、传质、二氧化碳浓度、流速、培养系统和混合机制。此外,还讨论了包括一氧化氮、二氧化硫和汞在内的不同烟气成分对生长动力学的抑制作用,以提高基于微藻的二氧化碳生物固定能力,同时探讨了面临的挑战和未来发展前景。总体而言,该综述表明基于微藻的烟气二氧化碳固定率范围为每天80毫克/升至超过578毫克/升,主要受物理化学参数和烟气成分影响。本文总结了基于微藻的二氧化碳封存的机制和阶段,并基于国际上对这项绿色技术的关注进行了全面综述。