Suppr超能文献

用于增强热管理且无能耗的双共振低温红外伪装材料。

Low-Temperature IR Camouflage Materials by Dual Resonances for Enhanced Thermal Management without Energy Consumption.

作者信息

An Kyum, Kim Taehwan, Lee Namkyu

机构信息

Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 13722, South Korea.

Samsung Electronics Co. Ltd., 1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448, South Korea.

出版信息

ACS Appl Mater Interfaces. 2025 Feb 12;17(6):10145-10157. doi: 10.1021/acsami.4c19960. Epub 2025 Jan 31.

Abstract

Due to the critical importance of carbon neutrality for the survival of humanity, passive thermal management, which manages thermal energy without additional energy consumption, has become increasingly attractive. Camouflage materials offer a promising solution for passive thermal management, as they can dissipate heat through thermal radiation, reducing the need for energy-intensive cooling systems. However, developing effective infrared (IR) camouflage solutions for low-temperature environments and small-sized applications remains a challenge because the low temperatures limit the ability to dissipate radiative energy from the surface. Moreover, conventional IR camouflage materials, typically optimized for single band (5-8 μm), face significant limitations in energy dissipation at lower temperatures, which requires a novel way to increase the energy dissipation without the additional energy consumption. Herein, we present a novel low-temperature IR camouflage material (LICM) designed to address these challenges by employing dual-band resonances in the nondetection bands, 5-8 and 14-20 μm based on the atmospheric transmittance. LICM demonstrated an increase in energy dissipation of 273 and 167% at 250 and 350 K, respectively than the conventional IR camouflage materials. Despite the enhanced dissipation, the LICM maintained an IR signature reduction of around 10% of blackbody radiation, ensuring effective IR camouflage. Thermographic measurements using an LWIR camera (7.5-14 μm) further demonstrated the LICM's superior IR camouflage performance. This dual-band resonance design not only extends IR camouflage to low-temperature environments but also facilitates significant energy savings, making it a key ingredient for broad-scale deployment in areas such as energy conversion, aerospace, and sustainable thermal management technologies.

摘要

由于碳中和对人类生存至关重要,无需额外能源消耗就能管理热能的被动式热管理变得越来越有吸引力。伪装材料为被动式热管理提供了一个有前景的解决方案,因为它们可以通过热辐射散热,减少对高能耗冷却系统的需求。然而,为低温环境和小型应用开发有效的红外(IR)伪装解决方案仍然是一个挑战,因为低温限制了从表面耗散辐射能的能力。此外,传统的红外伪装材料通常针对单波段(5-8μm)进行优化,在较低温度下的能量耗散方面面临重大限制,这就需要一种新的方法来增加能量耗散而无需额外的能源消耗。在此,我们提出一种新型低温红外伪装材料(LICM),旨在通过基于大气透过率在5-8μm和14-20μm这两个非探测波段采用双波段共振来应对这些挑战。与传统红外伪装材料相比,LICM在250K和350K时的能量耗散分别增加了273%和167%。尽管耗散增强,但LICM仍保持将红外特征降低至黑体辐射的10%左右,确保了有效的红外伪装。使用长波红外相机(7.5-14μm)进行的热成像测量进一步证明了LICM卓越的红外伪装性能。这种双波段共振设计不仅将红外伪装扩展到低温环境,还有助于大幅节约能源,使其成为在能量转换、航空航天和可持续热管理技术等领域大规模部署的关键要素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验