Jiang Xinpeng, Yuan Huan, He Xin, Du Te, Ma Hansi, Li Xin, Luo Mingyu, Zhang Zhaojian, Chen Huan, Yu Yang, Zhu Gangyi, Yan Peiguang, Wu Jiagui, Zhang Zhenfu, Yang Junbo
Center of Material Science, College of Sciences, National University of Defense Technology, Changsha 410073, China.
College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
Nanophotonics. 2023 Apr 13;12(10):1891-1902. doi: 10.1515/nanoph-2023-0067. eCollection 2023 May.
Infrared camouflage is an effective technique to avoid many kinds of target detection by detectors in the infrared band. For a high-temperature environment, thermal management of selective emission is crucial to dissipate heat in the mid-infrared non-atmospheric window (5-8 μm). However, it still remains challenges for balancing infrared camouflage and thermal management. Here, we experimentally demonstrate a multilayer film structure (MFS) for infrared camouflage with thermal management. Combining the ideal emission spectrum and genetic algorithm (GA), the inverse-design MFS containing 7 layers of five materials (SiO, Ge, ZnS, Pt and Au) has been designed. Based on the hierarchical metamaterial, the optimized MFS has high performance of infrared camouflage to against the lidar detection in the near-infrared band. The experimental results reveal the high compatible efficiency among thermal camouflage ( = 0.21, = 0.16), laser stealth ( = 0.64, = 0.90, = 0.76) and thermal management ( = 0.54). Therefore, the proposed MFSs are attractive as basic building block of selective emitter, for the application of advanced photonics such as radiative cooling, infrared camouflage, and thermal emission.
红外伪装是一种有效的技术,可避免红外波段探测器对多种目标的探测。对于高温环境,选择性发射的热管理对于在中红外非大气窗口(5-8μm)散热至关重要。然而,在平衡红外伪装和热管理方面仍然存在挑战。在此,我们通过实验展示了一种具有热管理功能的用于红外伪装的多层膜结构(MFS)。结合理想发射光谱和遗传算法(GA),设计了一种包含五种材料(SiO、Ge、ZnS、Pt和Au)的7层逆设计MFS。基于分层超材料,优化后的MFS在近红外波段具有高性能的红外伪装能力以对抗激光雷达探测。实验结果揭示了热伪装(吸收率=0.21,发射率=0.16)、激光隐身(吸收率=0.64,反射率=0.90,透过率=0.76)和热管理(发射率=0.54)之间的高兼容效率。因此,所提出的MFS作为选择性发射器的基本构建块,对于诸如辐射冷却、红外伪装和热发射等先进光子学应用具有吸引力。