Suppr超能文献

网络药理学预测治疗肺炎的草药成分的靶点和途径:综述

Network pharmacology predicts targets and pathways of herbal components for the treatment of pneumonia: A review.

作者信息

Yang Dongxin, Chen Cuilian, Zhang Qingshang, Gong Jun

机构信息

Central Laboratory of YunFu People's Hospital, Yunfu, China.

YunFu Key Laboratory of Brain Diseases Research, Yunfu, China.

出版信息

Medicine (Baltimore). 2025 Jan 31;104(5):e41372. doi: 10.1097/MD.0000000000041372.

Abstract

Pneumonia is a respiratory disease with high pathogenicity and mortality. Traditional Chinese medicine (TCM) is a natural therapy that has proven effectiveness and safety. Although TCM has been found to be effective in treating pneumonia, further research is needed to determine the specific mechanism of action. This paper presents a literature search conducted in PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) databases using the keywords "pneumonia" and "network pharmacology." After screening, we retained the literature related to TCM. The study found that, according to network pharmacology prediction, 4 types of TCMs-natural active compounds, single herb medicine, Chinese patent medicines, and multi-component herbal formulations-were effective in treating pneumonia. TCM components demonstrated a multi-target and multi-pathway approach to treat the disease. The diversity of targets and signaling pathways not only facilitates the investigation of TCM's mechanism of action of TCM in pneumonia treatment but also offers novel insights and perspectives for innovative drug research and development.

摘要

肺炎是一种具有高致病性和高死亡率的呼吸道疾病。中医是一种已被证明具有有效性和安全性的自然疗法。尽管已发现中医在治疗肺炎方面有效,但仍需要进一步研究以确定其具体作用机制。本文介绍了一项在PubMed、科学网和中国知网数据库中使用关键词“肺炎”和“网络药理学”进行的文献检索。筛选后,我们保留了与中医相关的文献。研究发现,根据网络药理学预测,4种类型的中药——天然活性化合物、单味中药、中成药和多成分草药配方——在治疗肺炎方面有效。中药成分展示了一种多靶点、多途径治疗该疾病的方法。靶点和信号通路的多样性不仅有助于研究中医在肺炎治疗中的作用机制,也为创新药物研发提供了新的见解和视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbbe/11789858/ce48f0926c7f/medi-104-e41372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验