Suppr超能文献

DICOM查找表是迈向人工智能通用性的医学图像预处理中的关键步骤。

DICOM LUT is a Key Step in Medical Image Preprocessing Towards AI Generalizability.

作者信息

Dapamede Theo, Li Frank, Khosravi Bardia, Purkayastha Saptarshi, Trivedi Hari, Gichoya Judy

机构信息

Department of Radiology, Emory University, Atlanta, GA, USA.

Department of Radiology, Mayo Clinic, Rochester, MN, USA.

出版信息

J Imaging Inform Med. 2025 Jan 31. doi: 10.1007/s10278-025-01418-5.

Abstract

Image pre-processing has significant impact on performance of deep learning models in medicine; yet, there is no standardized method for DICOM pre-processing. In this study, we investigate the impact of two commonly used image preprocessing techniques, histogram equalization (HE) and values-of-interest look-up-table (VOI-LUT) transformations on the performance deep learning classifiers for chest X-rays (CXR). We generated two baseline datasets (raw pixel and standard DICOM processed) from our internal CXR dataset and then enhanced both with HE to create four distinct datasets. Four independent deep learning models for diagnosis of pneumothorax were trained and evaluated on two external datasets. Results reveal that HE enhancement significantly affects model performance, particularly in terms of generalizability. Models trained solely on HE-enhanced datasets exhibit poorer performance on external validation sets, suggesting potential overfitting and information loss. These models also exhibit shortcut learning, relying on spurious correlations in the training data for their prediction. This study highlights the importance of machine learning practitioners being aware of preprocessing techniques applied to datasets and their potential impacts on model performance, as well as need for including preprocessing information when sharing datasets. Additionally, this research underscores the necessity of using pixel values closer to clinical standards during dataset curation to improve model robustness and mitigate the risk of information loss.

摘要

图像预处理对医学深度学习模型的性能有重大影响;然而,对于DICOM预处理尚无标准化方法。在本研究中,我们调查了两种常用的图像预处理技术,即直方图均衡化(HE)和感兴趣值查找表(VOI-LUT)变换对胸部X光(CXR)深度学习分类器性能的影响。我们从内部CXR数据集中生成了两个基线数据集(原始像素和标准DICOM处理后),然后对两者都进行HE增强以创建四个不同的数据集。在两个外部数据集上训练并评估了四个用于气胸诊断的独立深度学习模型。结果表明,HE增强显著影响模型性能,尤其是在泛化能力方面。仅在HE增强数据集上训练的模型在外部验证集上表现较差,表明存在潜在的过拟合和信息损失。这些模型还表现出捷径学习,依靠训练数据中的虚假相关性进行预测。本研究强调了机器学习从业者了解应用于数据集的预处理技术及其对模型性能的潜在影响的重要性,以及在共享数据集时包含预处理信息的必要性。此外,本研究强调了在数据集整理过程中使用更接近临床标准的像素值以提高模型鲁棒性并降低信息损失风险的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验