Du Jing, Jia Lei, Gao Yanlin, Su Jianting, Wang Chao, Pang Xinghuo, Li Gang
Institute of Information and Statistics Center, Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Beijing, 100013, China.
Institute for Infectious and Endemic Disease Control, Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Beijing, 100013, China.
BMC Infect Dis. 2025 Jan 31;25(1):150. doi: 10.1186/s12879-025-10505-5.
Understanding the impact of public health and social measures (PHSMs) on influenza transmission is crucial for developing effective influenza prevention and control strategies.
This modeling study analyzed data from 2017 to 2022, in Beijing, China. Weekly influenza positive rate and influenza-like rate were incorporated to quantify the community-level influenza activities. The effective reproduction number and influenza attack rate were estimated using a branching process model and a transmission dynamics model, respectively. The impact of PHSMs was quantified through log-linear regression and counterfactual simulations under varying PHSM scenarios.
The transmissibility of influenza decreased by 68.41% (95%CI: 52.43, 78.80) in 2020, 67.07% (95%CI: 50.80, 77.89) in 2021 and 79.08% (95%CI: 63.18, 88.06) in 2022, and the attack rate dropped by 93.47% (95%CI: 85.86, 95.78), 95.37% (95%CI: 94.30, 96.89) and 71.61% (95%CI: 42.96, 81.24) over the same period, primarily due to the PHSMs. The simulation shows that strict PHSMs effectively suppressed the current flu epidemic effectively. When susceptible individuals drop to 50%, a relaxed strategy results in a smaller rebound in the next flu season, with epidemic sizes increasing to 1.18 (1.10, 1.30), 1.41 (1.20, 1.54), and 1.54 (1.35, 1.55) for relaxed, moderate, and strict measures, respectively.
Our study confirms the suppressive effect of coronavirus disease 2019 PHSMs on influenza transmission in Beijing. However, the relaxation of these measures' triggers resurgence, emphasizing the need for adaptive control strategies tailored to the population susceptibility and epidemic dynamics.
了解公共卫生和社会措施(PHSMs)对流感传播的影响对于制定有效的流感预防和控制策略至关重要。
本建模研究分析了2017年至2022年中国北京的数据。纳入每周流感阳性率和流感样病例率以量化社区层面的流感活动。分别使用分支过程模型和传播动力学模型估计有效繁殖数和流感发病率。通过对数线性回归和不同PHSM情景下的反事实模拟来量化PHSMs的影响。
2020年流感的传播力下降了68.41%(95%置信区间:52.43,78.80),2021年下降了67.07%(95%置信区间:50.80,77.89),2022年下降了79.08%(95%置信区间:63.18,88.06),同期发病率下降了93.47%(95%置信区间:85.86,95.78)、95.37%(95%置信区间:94.30,96.89)和71.61%(95%置信区间:42.96,81.24),主要归因于PHSMs。模拟表明,严格的PHSMs有效抑制了当前的流感疫情。当易感个体降至50%时,宽松策略导致下一个流感季节的反弹较小,对于宽松、适度和严格措施,疫情规模分别增加到1.18(1.10,1.30)、1.41(1.20,1.54)和1.54(1.35,1.55)。
我们的研究证实了2019年冠状病毒病PHSMs对北京流感传播的抑制作用。然而,这些措施的放松会引发疫情反弹,强调需要根据人群易感性和疫情动态制定适应性控制策略。