Marangon Emma, Rädecker Nils, Li Joan Y Q, Terzin Marko, Buerger Patrick, Webster Nicole S, Bourne David G, Laffy Patrick W
Australian Institute of Marine Science, Townsville, QLD, Australia.
College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
Microbiome. 2025 Jan 31;13(1):31. doi: 10.1186/s40168-024-02006-5.
The stability of the symbiotic relationship between coral and their dinoflagellate algae (Symbiodiniaceae) is disrupted by ocean warming. Although the coral thermal response depends on the complex interactions between host, Symbiodiniaceae and prokaryotes, the mechanisms underlying the initial destabilization of these symbioses are poorly understood.
In a 2-month manipulative experiment, we exposed the coral Porites lutea to gradually increasing temperatures corresponding to 0-8 degree heating weeks (DHW) and assessed the response of the coral holobiont using coral and Symbiodiniaceae transcriptomics, microbial 16S rRNA gene sequencing and physiological measurements. From early stages of heat stress (< 1 DHW), the increase in metabolic turnover shifted the holobiont to a net heterotrophic state in which algal-derived nutrients were insufficient to meet host energy demands, resulting in reduced holobiont performance at 1 DHW. We postulate the altered nutrient cycling also affected the coral-associated microbial community, with the relative abundance of Endozoicomonas bacteria declining under increasing heat stress. Integration of holobiont stress responses correlated this decline to an increase in expression of a host ADP-ribosylation factor, suggesting that Symbiodiniaceae and Endozoicomonas may underlie similar endosymbiotic regulatory processes.
The thermotolerance of coral holobionts therefore is influenced by the nutritional status of its members and their interactions, and this identified metabolic interdependency highlights the importance of applying an integrative approach to guide coral reef conservation efforts. Video Abstract.
海洋变暖破坏了珊瑚与其甲藻(共生藻科)之间共生关系的稳定性。尽管珊瑚的热响应取决于宿主、共生藻科和原核生物之间的复杂相互作用,但这些共生关系初始不稳定的潜在机制仍知之甚少。
在一项为期2个月的操纵性实验中,我们将黄孔珊瑚暴露于逐渐升高的温度下,相当于0 - 8个加热周(DHW),并使用珊瑚和共生藻科转录组学、微生物16S rRNA基因测序和生理测量来评估珊瑚共生体的反应。从热应激的早期阶段(<1 DHW)开始,代谢周转率的增加使共生体转变为净异养状态,即藻类衍生的营养物质不足以满足宿主的能量需求,导致在1 DHW时共生体性能下降。我们推测营养循环的改变也影响了与珊瑚相关的微生物群落,随着热应激增加,内共生菌属细菌的相对丰度下降。共生体应激反应的整合将这种下降与宿主ADP核糖基化因子表达的增加联系起来,表明共生藻科和内共生菌属可能是类似内共生调节过程的基础。
因此,珊瑚共生体的耐热性受其成员的营养状况及其相互作用的影响,这种确定的代谢相互依赖性凸显了采用综合方法指导珊瑚礁保护工作的重要性。视频摘要。