Suppr超能文献

一种用于推断单词具体性评级的生成方法。

A generative approach to extrapolate word concreteness ratings.

作者信息

Wang Tianqi, Xu Xu

机构信息

School of Foreign Languages, Shanghai Jiao Tong University, Shanghai, China.

Speech Science Laboratory, The University of Hong Kong, Hong Kong, China.

出版信息

Q J Exp Psychol (Hove). 2025 Mar 4:17470218251320641. doi: 10.1177/17470218251320641.

Abstract

A wealth of psycholinguistic and clinical research is supported by normative ratings of lexicosemantic properties, e.g., word concreteness, word valence, age-of-acquisition, etc. Collecting such ratings for a sufficiently large number of words is, however, notoriously labour-intensive. This study utilised the mixture density network (MDN), a generative approach, to implement a computational expansion of the concreteness ratings for simplified Chinese words. Based on different word embeddings, the MDN was trained to generate the probability density of a word's trial-level ratings, allowing us to predict not only the word's mean concreteness rating (con.mean), but also the potential variability (con.var) in people's perceptions about the word's concreteness. The resulting estimates were shown to largely converge with human ratings in both central tendency and variability, and to precisely reflect the important representational features of the construct. Apart from these internal validations, we also examined the contributions of con.mean to Chinese lexical processing. The results revealed the concreteness effect on event-related potentials associated with visual word recognition. To assist and enhance future research, we released the extrapolated concreteness ratings, along with degrees of variability, for over 78,000 Chinese words in the Open Science Framework (https://osf.io/gwr5h/).

摘要

大量的心理语言学和临床研究得到了词汇语义属性规范评级的支持,例如词的具体性、词的效价、习得年龄等。然而,为足够多的词收集此类评级的工作是出了名的耗费人力。本研究利用混合密度网络(MDN)这一生成式方法,对简体中文词的具体性评级进行计算扩展。基于不同的词嵌入,对MDN进行训练以生成词的试验级评级的概率密度,这使我们不仅能够预测词的平均具体性评级(con.mean),还能预测人们对词的具体性感知中的潜在变异性(con.var)。结果表明,所得估计值在集中趋势和变异性方面与人类评级基本一致,并能精确反映该构念的重要表征特征。除了这些内部验证之外,我们还研究了con.mean对中文词汇处理的贡献。结果揭示了具体性对与视觉单词识别相关的事件相关电位的影响。为了协助和促进未来的研究,我们在开放科学框架(https://osf.io/gwr5h/)中发布了超过78,000个中文词的外推具体性评级以及变异性程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验