Suppr超能文献

用于体积时空子空间重建的深度学习初始化压缩感知(Deli-CS)

Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction.

作者信息

Schauman S Sophie, Iyer Siddharth S, Sandino Christopher M, Yurt Mahmut, Cao Xiaozhi, Liao Congyu, Ruengchaijatuporn Natthanan, Chatnuntawech Itthi, Tong Elizabeth, Setsompop Kawin

机构信息

Department of Radiology, Stanford University, Stanford, CA, USA.

Department of Clinical Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden.

出版信息

MAGMA. 2025 Apr;38(2):221-237. doi: 10.1007/s10334-024-01222-2. Epub 2025 Feb 1.

Abstract

OBJECT

Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.

MATERIALS AND METHODS

This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.

RESULTS

The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.

DISCUSSION

By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.

摘要

目的

时空磁共振成像(MRI)方法可实现快速全脑多参数成像,但往往因重建时间过长或硬件要求过高而受到阻碍。本项目旨在利用深度学习减少重建时间。

材料与方法

本研究聚焦于加速容积多轴螺旋投影磁共振弹性成像(MRF)的重建,目标是实现全脑T1和T2成像,同时确保采用与临床需求相兼容的简化方法。为优化重建时间,首先通过高效利用内存的GPU实现对传统方法进行改进。然后引入深度学习初始化压缩感知(Deli-CS),该方法利用深度学习生成的种子点启动迭代重建,减少收敛所需的迭代次数。

结果

容积多轴螺旋投影MRF的完整重建过程仅需20分钟,而之前发表的方法则需要超过2小时。对比分析表明,Deli-CS在加快迭代重建速度的同时能保持高质量结果。

讨论

通过为迭代重建算法提供快速的热启动,该方法在保持重建质量的同时大幅减少了处理时间。其成功实施为先进的时空MRI技术铺平了道路,解决了重建时间过长的挑战,并以简化的方式确保了高效、高质量的成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e287/11914339/803155f28bcb/10334_2024_1222_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验