Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Applied Sciences Laboratory, GE Healthcare, Menlo Park, CA, USA.
Magn Reson Med. 2021 Jan;85(1):152-167. doi: 10.1002/mrm.28420. Epub 2020 Jul 22.
To propose a novel combined parallel imaging and deep learning-based reconstruction framework for robust reconstruction of highly accelerated 2D cardiac cine MRI data.
We propose DL-ESPIRiT, an unrolled neural network architecture that utilizes an extended coil sensitivity model to address SENSE-related field-of-view (FOV) limitations in previously proposed deep learning-based reconstruction frameworks. Additionally, we propose a novel neural network design based on (2+1)D spatiotemporal convolutions to produce more accurate dynamic MRI reconstructions than conventional 3D convolutions. The network is trained on fully sampled 2D cardiac cine datasets collected from 11 healthy volunteers with IRB approval. DL-ESPIRiT is compared against a state-of-the-art parallel imaging and compressed sensing method known as -ESPIRiT. The reconstruction accuracy of both methods is evaluated on retrospectively undersampled datasets (R = 12) with respect to standard image quality metrics as well as automatic deep learning-based segmentations of left ventricular volumes. Feasibility of DL-ESPIRiT is demonstrated on two prospectively undersampled datasets acquired in a single heartbeat per slice.
The (2+1)D DL-ESPIRiT method produces higher fidelity image reconstructions when compared to -ESPIRiT reconstructions with respect to standard image quality metrics (P < .001). As a result of improved image quality, segmentations made from (2+1)D DL-ESPIRiT images are also more accurate than segmentations from -ESPIRiT images.
DL-ESPIRiT synergistically combines a robust parallel imaging model and deep learning-based priors to produce high-fidelity reconstructions of retrospectively undersampled 2D cardiac cine data acquired with reduced FOV. Although a proof-of-concept is shown, further experiments are necessary to determine the efficacy of DL-ESPIRiT in prospectively undersampled data.
提出一种新颖的联合并行成像和基于深度学习的重建框架,用于稳健重建高度加速的 2D 心脏电影 MRI 数据。
我们提出了 DL-ESPIRiT,这是一种展开的神经网络架构,利用扩展的线圈灵敏度模型来解决以前提出的基于深度学习的重建框架中与 SENSE 相关的视野(FOV)限制。此外,我们提出了一种基于(2+1)D 时空卷积的新型神经网络设计,以比传统的 3D 卷积产生更准确的动态 MRI 重建。该网络在经过 IRB 批准的 11 名健康志愿者采集的全采样 2D 心脏电影数据集上进行训练。DL-ESPIRiT 与一种称为 -ESPIRiT 的先进并行成像和压缩感知方法进行比较。两种方法的重建准确性都在回顾性欠采样数据集(R=12)上进行评估,评估指标为标准图像质量指标以及左心室容积的自动深度学习分割。在每个切片一个心跳的两个前瞻性欠采样数据集中证明了 DL-ESPIRiT 的可行性。
与 -ESPIRiT 重建相比,(2+1)D DL-ESPIRiT 方法在标准图像质量指标方面产生了更高保真度的图像重建(P<0.001)。由于图像质量的提高,(2+1)D DL-ESPIRiT 图像的分割也比 -ESPIRiT 图像的分割更准确。
DL-ESPIRiT 协同结合了强大的并行成像模型和基于深度学习的先验知识,可对使用减少的 FOV 采集的回顾性欠采样 2D 心脏电影数据进行高保真重建。尽管展示了概念验证,但仍需要进一步的实验来确定 DL-ESPIRiT 在前瞻性欠采样数据中的效果。