Suppr超能文献

基于深度学习的 ESPIRiT 重建技术加速心脏电影 MRI。

Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction.

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

Applied Sciences Laboratory, GE Healthcare, Menlo Park, CA, USA.

出版信息

Magn Reson Med. 2021 Jan;85(1):152-167. doi: 10.1002/mrm.28420. Epub 2020 Jul 22.

Abstract

PURPOSE

To propose a novel combined parallel imaging and deep learning-based reconstruction framework for robust reconstruction of highly accelerated 2D cardiac cine MRI data.

METHODS

We propose DL-ESPIRiT, an unrolled neural network architecture that utilizes an extended coil sensitivity model to address SENSE-related field-of-view (FOV) limitations in previously proposed deep learning-based reconstruction frameworks. Additionally, we propose a novel neural network design based on (2+1)D spatiotemporal convolutions to produce more accurate dynamic MRI reconstructions than conventional 3D convolutions. The network is trained on fully sampled 2D cardiac cine datasets collected from 11 healthy volunteers with IRB approval. DL-ESPIRiT is compared against a state-of-the-art parallel imaging and compressed sensing method known as -ESPIRiT. The reconstruction accuracy of both methods is evaluated on retrospectively undersampled datasets (R = 12) with respect to standard image quality metrics as well as automatic deep learning-based segmentations of left ventricular volumes. Feasibility of DL-ESPIRiT is demonstrated on two prospectively undersampled datasets acquired in a single heartbeat per slice.

RESULTS

The (2+1)D DL-ESPIRiT method produces higher fidelity image reconstructions when compared to -ESPIRiT reconstructions with respect to standard image quality metrics (P < .001). As a result of improved image quality, segmentations made from (2+1)D DL-ESPIRiT images are also more accurate than segmentations from -ESPIRiT images.

CONCLUSIONS

DL-ESPIRiT synergistically combines a robust parallel imaging model and deep learning-based priors to produce high-fidelity reconstructions of retrospectively undersampled 2D cardiac cine data acquired with reduced FOV. Although a proof-of-concept is shown, further experiments are necessary to determine the efficacy of DL-ESPIRiT in prospectively undersampled data.

摘要

目的

提出一种新颖的联合并行成像和基于深度学习的重建框架,用于稳健重建高度加速的 2D 心脏电影 MRI 数据。

方法

我们提出了 DL-ESPIRiT,这是一种展开的神经网络架构,利用扩展的线圈灵敏度模型来解决以前提出的基于深度学习的重建框架中与 SENSE 相关的视野(FOV)限制。此外,我们提出了一种基于(2+1)D 时空卷积的新型神经网络设计,以比传统的 3D 卷积产生更准确的动态 MRI 重建。该网络在经过 IRB 批准的 11 名健康志愿者采集的全采样 2D 心脏电影数据集上进行训练。DL-ESPIRiT 与一种称为 -ESPIRiT 的先进并行成像和压缩感知方法进行比较。两种方法的重建准确性都在回顾性欠采样数据集(R=12)上进行评估,评估指标为标准图像质量指标以及左心室容积的自动深度学习分割。在每个切片一个心跳的两个前瞻性欠采样数据集中证明了 DL-ESPIRiT 的可行性。

结果

与 -ESPIRiT 重建相比,(2+1)D DL-ESPIRiT 方法在标准图像质量指标方面产生了更高保真度的图像重建(P<0.001)。由于图像质量的提高,(2+1)D DL-ESPIRiT 图像的分割也比 -ESPIRiT 图像的分割更准确。

结论

DL-ESPIRiT 协同结合了强大的并行成像模型和基于深度学习的先验知识,可对使用减少的 FOV 采集的回顾性欠采样 2D 心脏电影数据进行高保真重建。尽管展示了概念验证,但仍需要进一步的实验来确定 DL-ESPIRiT 在前瞻性欠采样数据中的效果。

相似文献

1
Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction.
Magn Reson Med. 2021 Jan;85(1):152-167. doi: 10.1002/mrm.28420. Epub 2020 Jul 22.
2
Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps.
Magn Reson Med. 2023 Jul;90(1):280-294. doi: 10.1002/mrm.29625. Epub 2023 Feb 27.
4
Real-time, single breath-hold, multi-slice, 2D cine radial MR image reconstruction using sc-GROG k-t ESPIRiT.
Biomed Phys Eng Express. 2022 Nov 11;8(6). doi: 10.1088/2057-1976/ac9f4e.
5
Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
Med Phys. 2023 May;50(5):2939-2960. doi: 10.1002/mp.16182. Epub 2023 Jan 17.
7
Accelerated Cine Cardiac MRI Using Deep Learning-Based Reconstruction: A Systematic Evaluation.
J Magn Reson Imaging. 2024 Aug;60(2):640-650. doi: 10.1002/jmri.29081. Epub 2023 Oct 19.
9
Training deep learning based dynamic MR image reconstruction using open-source natural videos.
Sci Rep. 2024 May 23;14(1):11774. doi: 10.1038/s41598-024-62294-7.

引用本文的文献

2
Cardiac digital twins at scale from MRI: Open tools and representative models from ~ 55000 UK Biobank participants.
PLoS One. 2025 Jul 15;20(7):e0327158. doi: 10.1371/journal.pone.0327158. eCollection 2025.
6
Qualitative and Quantitative Evaluation of a Deep Learning-Based Reconstruction for Accelerated Cardiac Cine Imaging.
Bioengineering (Basel). 2025 Feb 24;12(3):231. doi: 10.3390/bioengineering12030231.
7
Reconstruction techniques for accelerating dynamic cardiovascular magnetic resonance imaging.
J Cardiovasc Magn Reson. 2025 Mar 6;27(1):101873. doi: 10.1016/j.jocmr.2025.101873.
9
Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction.
MAGMA. 2025 Apr;38(2):221-237. doi: 10.1007/s10334-024-01222-2. Epub 2025 Feb 1.

本文引用的文献

1
Compressed Sensing: From Research to Clinical Practice with Deep Neural Networks.
IEEE Signal Process Mag. 2020 Jan;37(1):111-127. doi: 10.1109/MSP.2019.2950433. Epub 2020 Jan 17.
2
MR image reconstruction using deep learning: evaluation of network structure and loss functions.
Quant Imaging Med Surg. 2019 Sep;9(9):1516-1527. doi: 10.21037/qims.2019.08.10.
3
k -Space Deep Learning for Accelerated MRI.
IEEE Trans Med Imaging. 2020 Feb;39(2):377-386. doi: 10.1109/TMI.2019.2927101. Epub 2019 Jul 5.
4
Evaluating a novel free-breathing accelerated cardiac MRI cine sequence in patients with cardiomyopathy.
Magn Reson Imaging. 2019 Sep;61:260-266. doi: 10.1016/j.mri.2019.06.008. Epub 2019 Jun 11.
6
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
7
Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction.
IEEE Trans Med Imaging. 2019 Jan;38(1):280-290. doi: 10.1109/TMI.2018.2863670. Epub 2018 Aug 6.
8
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
9
Learning a variational network for reconstruction of accelerated MRI data.
Magn Reson Med. 2018 Jun;79(6):3055-3071. doi: 10.1002/mrm.26977. Epub 2017 Nov 8.
10
A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction.
IEEE Trans Med Imaging. 2018 Feb;37(2):491-503. doi: 10.1109/TMI.2017.2760978. Epub 2017 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验