Gavutis Martynas, Paracini Nicolò, Lakey Jeremy, Valiokas Ramūnas, Clifton Luke A
Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania.
Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.
J Colloid Interface Sci. 2025 May 15;686:163-174. doi: 10.1016/j.jcis.2025.01.224. Epub 2025 Jan 27.
Tethered bilayer lipid membranes (tBLMs) are a robust model system for studying the biophysics of cell membranes, including protein-lipid interactions and membrane dynamics. In this study we describe the structural properties of a novel tBLM platform based on self-assembled monolayers (SAMs) on gold presenting sparsely distributed linear tethers. The interfacial architecture of tBLMs built on two types of alkane tether arrangements, homogeneously distributed short tethers and nanoclustered long tethers, were resolved using neutron reflectometry (NR). A series of tBLM systems was prepared and structurally characterized, with variations in membrane phase (gel and fluid lipids), substrate attachment type (floating and tethered), and electrostatic properties (zwitterionic and negatively charged lipids). Furthermore, the versatility of the tBLM platform was demonstrated by incorporating transmembrane proteins, specifically the outer membrane protein F (OmpF), into the tethered bilayer. Quantitative analyses using NR and quartz crystal microbalance with dissipation monitoring (QCM-D) confirmed successful protein incorporation, with an estimated OmpF volume fraction ∼ 18 % within the tBLM. The tBLMs exhibited excellent stability and maintained structural integrity under continuous flow conditions during up to 16-hour NR experiments. Our results highlight the adaptability of this sparse tethering system for creating physiologically relevant membrane models, facilitating precise investigations of membrane-associated processes and protein interactions. The study establishes the potential of this platform for advancing biophysical research on cell membranes and membrane proteins, as well as developing biomimetic systems for analytical and screening applications.
拴系双层脂质膜(tBLMs)是用于研究细胞膜生物物理学的强大模型系统,包括蛋白质 - 脂质相互作用和膜动力学。在本研究中,我们描述了一种基于金表面自组装单分子层(SAMs)的新型tBLM平台的结构特性,该平台具有稀疏分布的线性拴系。使用中子反射率(NR)解析了基于两种烷烃拴系排列构建的tBLMs的界面结构,即均匀分布的短拴系和纳米簇状长拴系。制备了一系列tBLM系统并对其进行了结构表征,其中膜相(凝胶态和液态脂质)、底物附着类型(漂浮和拴系)以及静电性质(两性离子和带负电荷的脂质)存在变化。此外,通过将跨膜蛋白,特别是外膜蛋白F(OmpF)整合到拴系双层中,证明了tBLM平台的多功能性。使用NR和带耗散监测的石英晶体微天平(QCM-D)进行的定量分析证实了蛋白质的成功整合,估计tBLM内OmpF的体积分数约为18%。在长达16小时的NR实验中,tBLMs在连续流动条件下表现出出色的稳定性并保持结构完整性。我们的结果突出了这种稀疏拴系系统在创建生理相关膜模型方面的适应性,有助于对膜相关过程和蛋白质相互作用进行精确研究。该研究确立了该平台在推进细胞膜和膜蛋白生物物理研究以及开发用于分析和筛选应用的仿生系统方面的潜力。