Khan Kabiruddin, Abdullayev Ramin, Jillella Gopala Krishna, Nair Varun Gopalakrishnan, Bousily Mahmoud, Kar Supratik, Gajewicz-Skretna Agnieszka
Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
Ecotoxicol Environ Saf. 2025 Feb;291:117824. doi: 10.1016/j.ecoenv.2025.117824. Epub 2025 Jan 31.
Cyanide compounds are extensively used in industries like mining, metallurgy, and chemical synthesis, but their high toxicity presents serious environmental and health risks. This study applies advanced modeling techniques such as Quantitative Structure-Toxicity Relationship (QSTR), Species cyanide-Sensitivity Distribution (ScSD), and quantitative Read-Across Structure Toxicity (q-RASTR) to assess cyanide toxicity. A dataset of 25 cyanide salts was analyzed for acute, chronic, and lethal toxicity across species like humans, rats, and fish. Key molecular descriptors, including topological, geometrical, and electronic properties, were computed using ALOGPS 2.1, ChemAxon, and Elemental-Descriptor 1.0. Three machine learning methods MLR, PLS, and kNN were employed to develop predictive models. Further, q-RASTR models were developed to enhance the predictive power by similarity measures concept of the studied cyanides by integrating features from QSTR and ScSD models. These models were validated using external datasets, achieving high accuracy. Key descriptors such as refractivity, water solubility, and lipophilic components significantly influence cyanide toxicity. The combined QSTR, ScSD, and q-RASTR models provide a robust framework for predicting species-specific cyanide-sensitivity, enhancing our understanding of cyanide's molecular toxicity mechanisms. This research aids environmental risk assessment and informs safer regulatory strategies. The results are available for public access at https://nanosens.onrender.com/apps/calTox/index.html#/.
氰化物化合物广泛应用于采矿、冶金和化学合成等行业,但其高毒性带来了严重的环境和健康风险。本研究应用先进的建模技术,如定量结构-毒性关系(QSTR)、物种氰化物-敏感性分布(ScSD)和定量跨结构毒性(q-RASTR)来评估氰化物毒性。分析了一个包含25种氰化物盐的数据集,以评估其对人类、大鼠和鱼类等物种的急性、慢性和致死毒性。使用ALOGPS 2.1、ChemAxon和Elemental-Descriptor 1.0计算了包括拓扑、几何和电子性质在内的关键分子描述符。采用多元线性回归(MLR)、偏最小二乘法(PLS)和k近邻算法(kNN)三种机器学习方法建立预测模型。此外,通过整合QSTR和ScSD模型的特征,利用所研究氰化物的相似性度量概念开发了q-RASTR模型,以提高预测能力。这些模型使用外部数据集进行了验证,具有很高的准确性。诸如折射率、水溶性和亲脂性成分等关键描述符对氰化物毒性有显著影响。结合QSTR、ScSD和q-RASTR模型为预测物种特异性氰化物敏感性提供了一个强大的框架,增强了我们对氰化物分子毒性机制的理解。本研究有助于环境风险评估,并为更安全的监管策略提供信息。研究结果可在https://nanosens.onrender.com/apps/calTox/index.html#/上公开获取。