Keshavarz Pedram, Nezami Nariman, Yazdanpanah Fereshteh, Khojaste-Sarakhsi Maryam, Mohammadigoldar Zahra, Azami Mobin, Hajati Azadeh, Ebrahimian Sadabad Faranak, Chiang Jason, McWilliams Justin P, Lu David S K, Raman Steven S
Department of Radiological Sciences, David Geffen School of Medicine at The University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
Department of Radiology, MedStar Georgetown University Hospital, Washington, DC 20007, USA; Georgetown University School of Medicine, Washington, DC 20007, USA; Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA.
Eur J Radiol. 2025 Mar;184:111948. doi: 10.1016/j.ejrad.2025.111948. Epub 2025 Jan 24.
To perform a systematic literature review of the efficacy of different AI models to predict HCC treatment response to transarterial chemoembolization (TACE), including overall survival (OS) and time to progression (TTP).
This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines until May 2, 2024.
The systematic review included 23 studies with 4,486 HCC patients. The AI algorithm receiver operator characteristic (ROC) area under the curve (AUC) for predicting HCC response to TACE based on mRECIST criteria ranged from 0.55 to 0.97. Radiomics-models outperformed non-radiomics models (AUCs: 0.79, 95 %CI: 0.75-0.82 vs. 0.73, 0.61-0.77, respectively). The best ML methods used for the prediction of TACE response for HCC patients were CNN, GB, SVM, and RF with AUCs of 0.88 (0.79-0.97), 0.82 (0.71-0.89), 0.8 (0.60-0.87) and 0.8 (0.55-0.96), respectively. Of all predictive feature models, those combining clinic-radiologic features (ALBI grade, BCLC stage, AFP level, tumor diameter, distribution, and peritumoral arterial enhancement) had higher AUCs compared with models based on clinical characteristics alone (0.79, 0.73-0.89; p = 0.04 for CT + clinical, 0.81, 0.75-0.88; p = 0.017 for MRI + clinical versus 0.6, 0.55-0.75 in clinical characteristics alone).
Integrating clinic-radiologic features enhances AI models' predictive performance for HCC patient response to TACE, with CNN, GB, SVM, and RF methods outperforming others. Key predictive clinic-radiologic features include ALBI grade, BCLC stage, AFP level, tumor diameter, distribution, and peritumoral arterial enhancement. Multi-institutional studies are needed to improve AI model accuracy, address heterogeneity, and resolve validation issues.
对不同人工智能模型预测肝细胞癌(HCC)经动脉化疗栓塞术(TACE)治疗反应的疗效进行系统的文献综述,包括总生存期(OS)和疾病进展时间(TTP)。
本系统综述按照系统评价与Meta分析的首选报告项目(PRISMA)指南进行,截至2024年5月2日。
该系统综述纳入了23项研究,共4486例HCC患者。基于改良实体瘤疗效评价标准(mRECIST)预测HCC对TACE反应的人工智能算法受试者工作特征曲线(ROC)下面积(AUC)范围为0.55至0.97。影像组学模型优于非影像组学模型(AUC分别为:0.79,95%CI:0.75 - 0.82 vs. 0.73,0.61 - 0.77)。用于预测HCC患者TACE反应的最佳机器学习方法是卷积神经网络(CNN)、梯度提升(GB)、支持向量机(SVM)和随机森林(RF),其AUC分别为0.88(0.79 - 0.97)、0.82(0.71 - 0.89)、0.8(0.60 - 0.87)和0.8(0.55 - 0.96)。在所有预测特征模型中,与仅基于临床特征的模型相比,结合临床 - 放射学特征(白蛋白 - 胆红素分级、巴塞罗那临床肝癌分期、甲胎蛋白水平、肿瘤直径、分布及瘤周动脉强化)的模型具有更高的AUC(CT + 临床:0.79,0.73 - 0.89;p = 0.04;MRI + 临床:0.81,0.75 - 0.88;p = 0.017,而仅临床特征的模型AUC为0.6,0.55 - 0.75)。
整合临床 - 放射学特征可提高人工智能模型对HCC患者TACE反应的预测性能,其中CNN、GB、SVM和RF方法表现优于其他方法。关键的预测性临床 - 放射学特征包括白蛋白 - 胆红素分级、巴塞罗那临床肝癌分期、甲胎蛋白水平、肿瘤直径、分布及瘤周动脉强化。需要开展多机构研究以提高人工智能模型的准确性、解决异质性问题并解决验证问题。