Gardner Jessica C, Jovanovic Katarina, Ottaviani Daniele, Melo Uirá Souto, Jackson Joshua, Guarascio Rosellina, Ziaka Kalliopi, Hau Kwan-Leong, Lane Amelia, Taylor Rachel L, Chai Niuzheng, Gkertsou Christina, Fernando Owen, Piwecka Monika, Georgiou Michalis, Mundlos Stefan, Black Graeme C, Moore Anthony T, Michaelides Michel, Cheetham Michael E, Hardcastle Alison J
UCL Institute of Ophthalmology, University College London, London, UK.
UCL Institute of Ophthalmology, University College London, London, UK.
Am J Hum Genet. 2025 Mar 6;112(3):523-536. doi: 10.1016/j.ajhg.2025.01.007. Epub 2025 Jan 31.
In two unrelated families with X-linked inherited retinal dystrophy, identification of the causative variants was elusive. Interrogation of the next-generation sequencing (NGS) data revealed a "dark" intergenic region on Xq27.1 with poor coverage. Long-range PCR and DNA walking across this region revealed different inter-chromosomal insertions into the human-specific palindrome on Xq27.1: a 58 kb insertion of 9p24.3 [der(X)dir ins(X;9)(q27.1;p24.3)] in family 1 and a 169 kb insertion of 3p14.2 [der(X)inv ins(X;3)(q27.1;p14.2)] in family 2. To explore the functional consequence of these structural variants in genomic and cellular contexts, induced pluripotent stem cells were derived from affected and control fibroblasts and differentiated to retinal organoids (ROs) and retinal pigment epithelium. Transcriptional dysregulation was evaluated using RNA sequencing (RNA-seq) and RT-qPCR. A downstream long non-coding RNA, LINC00632 (Xq27.1), was upregulated in ROs from both families compared to control samples. In contrast, the circular RNA CDR1as/ciRS-7 (circular RNA sponge for miR-7), spliced from linear LINC00632, was downregulated. To investigate this tissue-specific dysregulation, we interrogated the landscape of the locus using Hi-C and cleavage under targets and tagmentation sequencing (CUT&Tag). This revealed active retinal enhancers within the insertions within a topologically associated domain that also contained the upstream promoter of LINC00632, permitting ectopic contact. Furthermore, CDR1as/ciRS-7 acts as a "sponge" for miR-7, and target genes of miR-7 were also dysregulated in ROs derived from both families. We describe a new genomic mechanism for retinal dystrophy, and our data support a convergent tissue-specific mechanism of altered regulation of LINC00632 and CDR1as/ciRS-7 as a consequence of the insertions within the palindrome on Xq27.1.
在两个患有X连锁遗传性视网膜营养不良的无亲缘关系家庭中,致病变异的鉴定一直难以实现。对下一代测序(NGS)数据的分析揭示了Xq27.1上一个覆盖度较差的“暗”基因间区域。通过长距离PCR和跨越该区域的DNA步移,发现了不同的染色体间插入到Xq27.1上的人类特异性回文序列中:在家族1中是9p24.3的58 kb插入[der(X)dir ins(X;9)(q27.1;p24.3)],在家族2中是3p14.2的169 kb插入[der(X)inv ins(X;3)(q27.1;p14.2)]。为了在基因组和细胞环境中探究这些结构变异的功能后果,从受影响和对照的成纤维细胞中诱导产生多能干细胞,并将其分化为视网膜类器官(ROs)和视网膜色素上皮。使用RNA测序(RNA-seq)和RT-qPCR评估转录失调情况。与对照样本相比,两个家族的ROs中一种下游长链非编码RNA,LINC00632(位于Xq27.1)上调。相反,从线性LINC00632剪接而来的环状RNA CDR1as/ciRS-7(miR-7的环状RNA海绵)下调。为了研究这种组织特异性失调,我们使用Hi-C和靶向切割及标签化测序(CUT&Tag)探究了该基因座的情况。这揭示了在一个拓扑相关结构域内的插入片段中存在活跃的视网膜增强子,该结构域还包含LINC00632的上游启动子,允许异位接触。此外,CDR1as/ciRS-7作为miR-7的“海绵”,miR-7的靶基因在两个家族来源的ROs中也失调。我们描述了一种视网膜营养不良的新基因组机制,我们的数据支持一种趋同的组织特异性机制,即由于Xq27.1上回文序列内的插入导致LINC00632和CDR1as/ciRS-7的调控改变。