Capó Marco, Vitali Silvia, Athanasiou Georgios, Cusimano Nicole, García Daniel, Cruickshank Garth, Patel Bipin
Oxcitas Limited, 28 Chesterton Road, Cambridge CB4 3AZ, United Kingdom.
Oxcitas Limited, 28 Chesterton Road, Cambridge CB4 3AZ, United Kingdom.
Neuroimage. 2025 Mar;308:121064. doi: 10.1016/j.neuroimage.2025.121064. Epub 2025 Jan 30.
In this study, we present a comprehensive pipeline to train and compare a broad spectrum of machine learning and deep learning brain clocks, integrating diverse preprocessing strategies and correction terms. Our analysis also includes established methodologies which have shown success in prior UK Biobank-related studies. For our analysis we used T1-weighted MRI scans and processed de novo all images via FastSurfer, transforming them into a conformed space for deep learning and extracting image-derived phenotypes for our machine learning approaches. We rigorously evaluated these approaches both as robust age predictors for healthy individuals and as potential biomarkers for various neurodegenerative conditions, leveraging data from the UK Biobank, ADNI, and NACC datasets. To this end we designed a statistical framework to assess age prediction performance, the robustness of the prediction across cohort variability (database, machine type and ethnicity) and its potential as a biomarker for neurodegenerative conditions. Results demonstrate that highly accurate brain age models, typically utilising penalised linear machine learning models adjusted with Zhang's methodology, with mean absolute errors under 1 year in external validation, can be achieved while maintaining consistent prediction performance across different age brackets and subgroups (e.g., ethnicity and MRI machine/manufacturer). Additionally, these models show strong potential as biomarkers for neurodegenerative conditions, such as dementia, where brain age prediction achieved an AUROC of up to 0.90 in distinguishing healthy individuals from those with dementia.
在本研究中,我们提出了一个全面的流程,用于训练和比较广泛的机器学习和深度学习脑龄时钟,整合了多种预处理策略和校正项。我们的分析还包括在先前与英国生物银行相关的研究中已显示出成效的既定方法。对于我们的分析,我们使用了T1加权磁共振成像扫描,并通过FastSurfer对所有图像进行从头处理,将它们转换为适用于深度学习的统一空间,并为我们的机器学习方法提取图像衍生表型。我们利用来自英国生物银行、阿尔茨海默病神经影像倡议(ADNI)和国家阿尔茨海默病协调中心(NACC)数据集的数据,严格评估了这些方法,既将其作为健康个体的稳健年龄预测指标,也作为各种神经退行性疾病的潜在生物标志物。为此,我们设计了一个统计框架,以评估年龄预测性能、预测在队列变异性(数据库、机器类型和种族)中的稳健性及其作为神经退行性疾病生物标志物的潜力。结果表明,可以实现高度准确的脑龄模型,通常使用采用张的方法调整的惩罚线性机器学习模型,在外部验证中平均绝对误差低于1岁,同时在不同年龄组和亚组(如种族和磁共振成像机器/制造商)中保持一致的预测性能。此外,这些模型显示出作为神经退行性疾病(如痴呆症)生物标志物的强大潜力,在区分健康个体和痴呆症患者时,脑龄预测的受试者工作特征曲线下面积(AUROC)高达0.90。