Suppr超能文献

广泛的 T1 加权 MRI 预处理可提高深部脑年龄预测模型的泛化能力。

Extensive T1-weighted MRI preprocessing improves generalizability of deep brain age prediction models.

机构信息

University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.

University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.

出版信息

Comput Biol Med. 2024 May;173:108320. doi: 10.1016/j.compbiomed.2024.108320. Epub 2024 Mar 20.

Abstract

Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI), representing a straightforward diagnostic biomarker of brain aging and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three years, comparing results across studies is challenging due to differences in the datasets, T1w preprocessing pipelines, and evaluation protocols used. This paper investigates the impact of T1w image preprocessing on the performance of four deep learning brain age models from recent literature. Four preprocessing pipelines, which differed in terms of registration transform, grayscale correction, and software implementation, were evaluated. The results showed that the choice of software or preprocessing steps could significantly affect the prediction error, with a maximum increase of 0.75 years in mean absolute error (MAE) for the same model and dataset. While grayscale correction had no significant impact on MAE, using affine rather than rigid registration to brain atlas statistically significantly improved MAE. Models trained on 3D images with isotropic 1mm resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models or those trained on downsampled 3D images. Our findings indicate that extensive T1w preprocessing improves MAE, especially when predicting on a new dataset. This runs counter to prevailing research literature, which suggests that models trained on minimally preprocessed T1w scans are better suited for age predictions on MRIs from unseen scanners. We demonstrate that, irrespective of the model or T1w preprocessing used during training, applying some form of offset correction is essential to enable the model's performance to generalize effectively on datasets from unseen sites, regardless of whether they have undergone the same or different T1w preprocessing as the training set.

摘要

脑龄是从 T1 加权磁共振图像(T1w MRI)中估计的实际年龄,是大脑老化和相关疾病的直接诊断生物标志物。虽然目前在健康受试者的 T1w MRI 上预测脑龄的最佳准确性范围在 2 到 3 年之间,但由于数据集、T1w 预处理管道和使用的评估协议的差异,比较研究结果具有挑战性。本文研究了 T1w 图像预处理对来自近期文献的四个深度学习脑龄模型性能的影响。评估了四个预处理管道,它们在注册变换、灰度校正和软件实现方面存在差异。结果表明,软件或预处理步骤的选择可能会显著影响预测误差,对于相同的模型和数据集,最大预测误差增加了 0.75 年。虽然灰度校正对 MAE 没有显著影响,但使用仿射而不是刚性注册到大脑图谱在统计上显著提高了 MAE。与 2D 模型或那些基于下采样 3D 图像训练的模型相比,具有各向同性 1mm 分辨率的 3D 图像训练的模型对 T1w 预处理变化的敏感性较低。我们的研究结果表明,广泛的 T1w 预处理可以提高 MAE,特别是在预测新数据集时。这与流行的研究文献相反,该文献表明,在经过最小预处理的 T1w 扫描上训练的模型更适合对来自未知扫描仪的 MRI 进行年龄预测。我们证明,无论在训练期间使用的是哪种模型或 T1w 预处理,应用某种形式的偏移校正对于使模型在来自未知站点的数据集上的性能有效地泛化是至关重要的,无论它们是否经历了与训练集相同或不同的 T1w 预处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验