Gao Yifei, Shi Runhan, Yu Gufeng, Huang Yuyang, Yang Yang
SJTU Paris Elite Institute of Technology (SPEIT), Shanghai, 200240, China; Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Methods. 2025 Mar;235:45-52. doi: 10.1016/j.ymeth.2025.01.014. Epub 2025 Jan 30.
RNA-protein interactions are crucial for biological functions across multiple levels. RNA binding proteins (RBPs) intricately engage in diverse biological processes through specific RNA molecule interactions. Previous studies have revealed the indispensable role of RBPs in both health and disease development. With the increase of experimental data, machine-learning methods have been widely used to predict RNA-protein interactions. However, most current methods either train models for individual RBPs or develop multi-task models for a fixed set of multiple RBPs. These approaches are incapable of predicting interactions with previously unseen RBPs. In this study, we present ZeRPI, a zero-shot method for predicting RNA-protein interactions. Based on a graph neural network model, ZeRPI integrates RNA and protein information to generate detailed representations, using a novel loss function based on contrastive learning principles to augment the alignment between interacting pairs in feature space. ZeRPI demonstrates competitive performance in predicting RNA-protein interactions across a wide array of RBPs. Notably, our model exhibits remarkable versatility in accurately predicting interactions for unseen RBPs, demonstrating its capacity to transfer knowledge learned from known RBPs.
RNA与蛋白质的相互作用在多个层面的生物学功能中都至关重要。RNA结合蛋白(RBPs)通过与特定RNA分子的相互作用,复杂地参与各种生物学过程。先前的研究已经揭示了RBPs在健康和疾病发展中的不可或缺的作用。随着实验数据的增加,机器学习方法已被广泛用于预测RNA与蛋白质的相互作用。然而,当前大多数方法要么为单个RBP训练模型,要么为一组固定的多个RBP开发多任务模型。这些方法无法预测与之前未见过的RBP的相互作用。在本研究中,我们提出了ZeRPI,一种用于预测RNA与蛋白质相互作用的零样本方法。基于图神经网络模型,ZeRPI整合RNA和蛋白质信息以生成详细的表征,使用基于对比学习原理的新型损失函数来增强特征空间中相互作用对之间的对齐。ZeRPI在预测多种RBP的RNA与蛋白质相互作用方面表现出具有竞争力的性能。值得注意的是,我们的模型在准确预测未见过的RBP的相互作用方面表现出显著的通用性,证明了其转移从已知RBP中学到的知识的能力。