Beech Abigail, Fan Haoxue, Shu Jocelyn, Oyarzun Javiera, Nadel Peter, Karaman Olivia T, Vranos Sophia, Phelps Elizabeth A, Kredlow M Alexandra
Department of Psychology, Tufts University, 490 Boston Ave, Medford, MA 02155, USA; Department of Psychology, Harvard University, 33 Kirkland, St Cambridge, MA 02138, USA.
Department of Psychology, Harvard University, 33 Kirkland, St Cambridge, MA 02138, USA.
J Affect Disord. 2025 May 1;376:113-121. doi: 10.1016/j.jad.2025.01.139. Epub 2025 Jan 31.
Combining data-driven natural language processing techniques with traditional methods using predefined word lists may offer greater insights into the connections between language patterns and depression and anxiety symptoms, particularly within specific stressful contexts.
Between 2020 and 2021, 1106 participants wrote narrative responses describing their experiences during the COVID-19 pandemic and completed the Depression Anxiety Stress Scale-21 (DASS). We investigated language patterns associated with DASS symptoms using established categories from Linguistic Inquiry and Word Count (LIWC) and sentiment analysis, as well as exploratory natural language processing techniques. Finally, we constructed machine learning regression models in order to assess how much of the variance in DASS symptoms is related to language use.
We found significant positive bivariate correlations between total DASS symptoms and hypothesized LIWC categories: first-person singular pronouns, absolute language, and negative emotion words. These results remained largely similar when using negative sentiment scores and when statistically controlling for gender, age, and education. Exploratory n-gram analyses also revealed new individual words and phrases correlated with total DASS symptoms. Lastly, our regression models demonstrated a significant association between language use and total DASS symptoms (R = 0.36-0.62).
The current study is one of the first to examine associations between language use and DASS symptoms during the pandemic using both traditional and data-driven techniques. These results replicate and extend prior findings regarding negative emotion and absolute language and identify unique correlates of DASS symptoms during pandemic-related stress, contributing to the literature on language and mental health more broadly.
将数据驱动的自然语言处理技术与使用预定义词表的传统方法相结合,可能会更深入地洞察语言模式与抑郁和焦虑症状之间的联系,特别是在特定的压力情境中。
在2020年至2021年期间,1106名参与者撰写了描述他们在新冠疫情期间经历的叙述性回答,并完成了抑郁焦虑压力量表-21(DASS)。我们使用语言查询与字数统计(LIWC)的既定类别和情感分析以及探索性自然语言处理技术,研究了与DASS症状相关的语言模式。最后,我们构建了机器学习回归模型,以评估DASS症状的方差中有多少与语言使用相关。
我们发现DASS总症状与假设的LIWC类别之间存在显著的正二元相关性:第一人称单数代词、绝对语言和负面情绪词。当使用负面情感分数以及对性别、年龄和教育程度进行统计控制时,这些结果在很大程度上保持相似。探索性n元语法分析还揭示了与DASS总症状相关的新的单个单词和短语。最后,我们的回归模型表明语言使用与DASS总症状之间存在显著关联(R = 0.36 - 0.62)。
本研究是最早使用传统和数据驱动技术来研究疫情期间语言使用与DASS症状之间关联的研究之一。这些结果重复并扩展了先前关于负面情绪和绝对语言的研究结果,并确定了疫情相关压力期间DASS症状的独特相关因素,更广泛地为语言与心理健康的文献做出了贡献。