文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

山奈酚增强内质网-线粒体偶联,并保护运动神经元免受C9ORF72型肌萎缩侧索硬化症中线粒体功能障碍和内质网应激的影响。

Kaempferol enhances ER-mitochondria coupling and protects motor neurons from mitochondrial dysfunction and ER stress in C9ORF72-ALS.

作者信息

Pilotto Federica, Smeele Paulien Hermine, Scheidegger Olivier, Diab Rim, Schobesberger Martina, Sierra-Delgado Julieth Andrea, Saxena Smita

机构信息

Institut Neuromyogène, Pathophysiology and Genetics of the Neuron and Muscle, Inserm U1315, CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008, Lyon, France.

Department of Neurology, Inselspital University Hospital, Bern, Switzerland.

出版信息

Acta Neuropathol Commun. 2025 Feb 1;13(1):21. doi: 10.1186/s40478-025-01927-y.


DOI:10.1186/s40478-025-01927-y
PMID:39893487
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11787762/
Abstract

Repeat expansions in the C9ORF72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Considerable progress has been made in identifying C9ORF72-mediated disease and resolving its underlying etiopathogenesis. The contributions of intrinsic mitochondrial deficits as well as chronic endoplasmic reticulum stress to the development of the C9ORF72-linked pathology are well established. Nevertheless, to date, no cure or effective therapy is available, and thus attempts to find a potential drug target, have received increasing attention. Here, we investigated the mode of action and therapeutic effect of a naturally occurring dietary flavanol, kaempferol in preclinical rodent and human models of C9ORF72-ALS. Notably, kaempferol treatment of C9ORF72-ALS human patient-derived motor neurons/neurons, resolved mitochondrial deficits, promoted resiliency against severe ER stress, and conferred neuroprotection. Treatment of symptomatic C9ORF72 mice with kaempferol, normalized mitochondrial calcium uptake, restored mitochondria function, and diminished ER stress. Importantly, in vivo, chronic kaempferol administration ameliorated pathological motor dysfunction and inhibited motor neuron degeneration, highlighting the translational potential of kaempferol. Lastly, in silico modelling identified a novel kaempferol target and mechanistically the neuroprotective mechanism of kaempferol is through the iP3R-VDAC1 pathway via the modulation of GRP75 expression. Thus, kaempferol holds great promise for treating neurodegenerative diseases where both mitochondrial and ER dysfunction are causally linked to the pathophysiology.

摘要

C9ORF72基因中的重复扩增是肌萎缩侧索硬化症(ALS)和额颞叶痴呆的常见病因。在识别C9ORF72介导的疾病并解析其潜在的病因发病机制方面已经取得了相当大的进展。内在线粒体缺陷以及慢性内质网应激对C9ORF72相关病理发展的作用已得到充分证实。然而,迄今为止,尚无治愈方法或有效疗法,因此寻找潜在药物靶点的尝试受到了越来越多的关注。在这里,我们研究了天然存在的膳食黄烷醇山奈酚在C9ORF72-ALS临床前啮齿动物模型和人类模型中的作用模式和治疗效果。值得注意的是,用山奈酚处理源自C9ORF72-ALS人类患者的运动神经元/神经元,可解决线粒体缺陷,增强对严重内质网应激的耐受性,并赋予神经保护作用。用山奈酚治疗有症状的C9ORF72小鼠,可使线粒体钙摄取正常化,恢复线粒体功能,并减轻内质网应激。重要的是,在体内,长期给予山奈酚可改善病理性运动功能障碍并抑制运动神经元变性,突出了山奈酚的转化潜力。最后,计算机模拟确定了一个新的山奈酚靶点,从机制上讲,山奈酚的神经保护机制是通过调节GRP75表达经由IP3R-VDAC1途径实现的。因此,山奈酚在治疗线粒体和内质网功能障碍均与病理生理学有因果关系的神经退行性疾病方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/9e40728e75e5/40478_2025_1927_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/12af0e5c7eee/40478_2025_1927_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/46cc0aacccee/40478_2025_1927_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/ae2378253344/40478_2025_1927_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/90fff10ce4d6/40478_2025_1927_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/1695cc8c05f6/40478_2025_1927_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/a1fa13dd4a5b/40478_2025_1927_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/9e40728e75e5/40478_2025_1927_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/12af0e5c7eee/40478_2025_1927_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/46cc0aacccee/40478_2025_1927_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/ae2378253344/40478_2025_1927_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/90fff10ce4d6/40478_2025_1927_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/1695cc8c05f6/40478_2025_1927_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/a1fa13dd4a5b/40478_2025_1927_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/11787762/9e40728e75e5/40478_2025_1927_Fig7_HTML.jpg

相似文献

[1]
Kaempferol enhances ER-mitochondria coupling and protects motor neurons from mitochondrial dysfunction and ER stress in C9ORF72-ALS.

Acta Neuropathol Commun. 2025-2-1

[2]
Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine.

Biomed Pharmacother. 2023-9

[3]
Stimulating VAPB-PTPIP51 ER-mitochondria tethering corrects FTD/ALS mutant TDP43 linked Ca and synaptic defects.

Acta Neuropathol Commun. 2024-2-23

[4]
Elucidating the Role of Cerebellar Synaptic Dysfunction in C9orf72-ALS/FTD - a Systematic Review and Meta-Analysis.

Cerebellum. 2022-8

[5]
PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD.

Acta Neuropathol. 2022-11

[6]
C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.

Stem Cells. 2016-8

[7]
Dysregulated FOXO1 activity drives skeletal muscle intrinsic dysfunction in amyotrophic lateral sclerosis.

Acta Neuropathol. 2024-9-16

[8]
Frontotemporal Dementia and/or Amyotrophic Lateral Sclerosis

1993

[9]
Gain-of-function ANXA11 mutation cause late-onset ALS with aberrant protein aggregation, neuroinflammation and autophagy impairment.

Acta Neuropathol Commun. 2025-1-4

[10]
The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development.

Brain Imaging Behav. 2021-10

引用本文的文献

[1]
Exploring the Neuroprotective Potentials of Flavonoid Metabolites in : A Review with in-silico Insight to Therapeutic Potential.

J Exp Pharmacol. 2025-8-29

[2]
The Ferroptosis-Mitochondrial Axis in Depression: Unraveling the Feedforward Loop of Oxidative Stress, Metabolic Homeostasis Dysregulation, and Neuroinflammation.

Antioxidants (Basel). 2025-5-20

本文引用的文献

[1]
Kaempferol attenuates particle-induced osteogenic impairment by regulating ER stress via the IRE1α-XBP1s pathway.

J Biol Chem. 2024-6

[2]
Antiproliferative Mechanisms of a Polyphenolic Combination of Kaempferol and Fisetin in Triple-Negative Breast Cancer Cells.

Int J Mol Sci. 2023-3-29

[3]
PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD.

Acta Neuropathol. 2022-11

[4]
The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress.

Int J Mol Sci. 2022-5-24

[5]
Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases.

J Cell Sci. 2022-2-1

[6]
Disruption of ER-mitochondria tethering and signalling in C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia.

Aging Cell. 2022-2

[7]
Connection Lost, MAM: Errors in ER-Mitochondria Connections in Neurodegenerative Diseases.

Brain Sci. 2021-10-28

[8]
Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(GC) repeat expansion in vitro and in vivo ALS models.

Sci Transl Med. 2021-10-27

[9]
Salubrinal Enhances Cancer Cell Death during Glucose Deprivation through the Upregulation of xCT and Mitochondrial Oxidative Stress.

Biomedicines. 2021-8-28

[10]
Amyotrophic Lateral Sclerosis (ALS): Stressed by Dysfunctional Mitochondria-Endoplasmic Reticulum Contacts (MERCs).

Cells. 2021-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索