Bulcaen Mattijs, Liu Ronald B, Gryspeert Kasper, Thierie Sam, Ramalho Anabela S, Vermeulen François, Casadevall I Solvas Xavier, Carlon Marianne S
Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium.
Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; Institute for Imaging, Data and Communication, University of Edinburgh, Edinburgh EH93JL, UK.
STAR Protoc. 2025 Mar 21;6(1):103593. doi: 10.1016/j.xpro.2024.103593. Epub 2025 Jan 31.
Here, we present a protocol for the rapid functional screening of gene editing and addition strategies in patient-derived organoids using the deep-learning-based tool DETECTOR (detection of targeted editing of cystic fibrosis transmembrane conductance regulator [CFTR] in organoids). We describe steps for wet-lab experiments, image acquisition, and CFTR function analysis by DETECTOR. We also detail procedures for applying pre-trained models and training custom models on new customized datasets. For complete details on the use and execution of this protocol, refer to Bulcaen et al..
在此,我们展示了一种使用基于深度学习的工具DETECTOR(检测类器官中囊性纤维化跨膜传导调节因子[CFTR]的靶向编辑)对患者来源的类器官中的基因编辑和添加策略进行快速功能筛选的方案。我们描述了湿实验室实验、图像采集以及通过DETECTOR进行CFTR功能分析的步骤。我们还详细说明了应用预训练模型以及在新的定制数据集上训练定制模型的程序。有关此方案的使用和执行的完整详细信息,请参考布尔凯恩等人的研究。