Suppr超能文献

重症监护病房急性肾损伤患者的个体化药物治疗与生存预测:列线图的构建与验证

Individualized drug therapy and survival prediction in ICU patients with acute kidney injury: construction and validation of a nomogram.

作者信息

Yang Rui, Su Xiaozhe, Liu Ziqi, Shao Shuai, Wang Yinhuai, Su Hao, He Haiqing

机构信息

Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.

Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.

出版信息

Eur J Med Res. 2025 Feb 3;30(1):65. doi: 10.1186/s40001-025-02300-4.

Abstract

BACKGROUND

Acute kidney injury (AKI) is defined by a sharp decrease in the estimated glomerular filtration rate (eGFR). However, the impact of medication history on the survival of AKI patients has received little attention. Hence, it is necessary to investigate the potential of medication history as a predictor of survival outcomes among AKI patients in the intensive care unit (ICU).

METHODS

Critically ill AKI patients were sourced from the MIMIC-IV database. To ascertain significant, drug-related, independent predictors of survival, univariate Cox analysis and stepwise Cox regression were performed. Based on the identified predictor, a nomogram was developed to estimate the individualized survival probability for AKI patients. Additionally, to address potential confounders among patients with medications referenced in the nomogram, a propensity score matching procedure was applied. Ultimately, a comparative analysis was performed to elucidate the prognostic disparities among these patient subgroups.

RESULTS

This study enrolled 1,208 patients and developed a nomogram incorporating oxygen flow rate, respiratory frequency, continuous venovenous hemodiafiltration status, age, and medication use (including ibuprofen, epinephrine, cefazolin, warfarin, and vasopressin). The predictive model demonstrated diagnostic accuracy, with AUC values for 1-year, 3-year, and 5-year survival among AKI patients of 0.827, 0.799, and 0.777 in the training dataset, and 0.760, 0.743, and 0.740 in the internal validation dataset, respectively. Kaplan-Meier survival analyses revealed significant differences in survival outcomes among AKI patients based on their exposure to different medications.

CONCLUSIONS

In summary, the developed prediction model demonstrated accuracy for AKI patients in the ICU and helped clinical decision-making. However, future studies will require external validation to confirm these findings.

摘要

背景

急性肾损伤(AKI)定义为估算肾小球滤过率(eGFR)急剧下降。然而,用药史对AKI患者生存的影响鲜受关注。因此,有必要研究用药史作为重症监护病房(ICU)中AKI患者生存结局预测指标的潜力。

方法

危重症AKI患者来自MIMIC-IV数据库。为确定生存的显著、药物相关独立预测因素,进行了单因素Cox分析和逐步Cox回归。基于确定的预测因素,绘制列线图以估计AKI患者的个体化生存概率。此外,为解决列线图中提及用药患者的潜在混杂因素,应用了倾向得分匹配程序。最终,进行比较分析以阐明这些患者亚组之间的预后差异。

结果

本研究纳入1208例患者,绘制了包含氧流量、呼吸频率、连续性静脉-静脉血液透析滤过状态、年龄和用药情况(包括布洛芬、肾上腺素、头孢唑林、华法林和血管加压素)的列线图。该预测模型显示出诊断准确性,训练数据集中AKI患者1年、3年和5年生存的AUC值分别为0.827、0.799和0.777,内部验证数据集中分别为0.760、0.743和0.740。Kaplan-Meier生存分析显示,根据不同用药情况,AKI患者的生存结局存在显著差异。

结论

总之,所开发的预测模型对ICU中的AKI患者显示出准确性,并有助于临床决策。然而,未来研究需要外部验证来证实这些发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验