Suppr超能文献

用于合并心房颤动的椎基底动脉闭塞血管内治疗的人工智能预测模型

AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation.

作者信息

Huang Zhi-Xin, Alexandre Andrea M, Pedicelli Alessandro, He Xuying, Hong Quanlong, Li Yongkun, Chen Ping, Cai Qiankun, Broccolini Aldobrando, Scarcia Luca, Abruzzese Serena, Cirelli Carlo, Bergui Mauro, Romi Andrea, Kalsoum Erwah, Frauenfelder Giulia, Meder Grzegorz, Scalise Simona, Ganimede Maria Porzia, Bellini Luigi, Del Sette Bruno, Arba Francesco, Sammali Susanna, Salcuni Andrea, Vinci Sergio Lucio, Cester Giacomo, Roveri Luisa, Huang Xianjun, Sun Wen

机构信息

NeuroMedical Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, 510317, China.

Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510317, China.

出版信息

NPJ Digit Med. 2025 Feb 2;8(1):78. doi: 10.1038/s41746-025-01478-5.

Abstract

Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% achieved favorable outcomes at 90 days, our advanced machine learning approach unveiled subtle interaction effects among clinical variables not captured by traditional statistical methods. The predictive model distinguished high-risk subgroups by integrating multiple parameters, demonstrating superior prognostic precision compared to standard NIHSS-based assessments. Novel findings include nonlinear relationships between dyslipidemia, stroke severity, and functional recovery. The developed predictive algorithm (AUC 0.719 internally, 0.684 externally) offers a more sophisticated risk stratification tool, potentially guiding personalized treatment strategies in high-complexity VBAO patients with atrial fibrillation.

摘要

对合并心房颤动的椎基底动脉闭塞(VBAO)进行血管内治疗(EVT)面临着复杂的临床挑战。这项对中国15个省份525例患者开展的全面多中心研究,探究了传统指标以外的细微预测因素。虽然45.1%的患者在90天时获得了良好预后,但我们先进的机器学习方法揭示了传统统计方法未捕捉到的临床变量之间的微妙交互作用。该预测模型通过整合多个参数区分出高风险亚组,与基于美国国立卫生研究院卒中量表(NIHSS)的标准评估相比,显示出更高的预后预测精度。新发现包括血脂异常、卒中严重程度和功能恢复之间的非线性关系。所开发的预测算法(内部AUC为0.719,外部为0.684)提供了一种更精密的风险分层工具,有可能为合并心房颤动的高复杂性VBAO患者指导个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4412/11788420/b7ebef371575/41746_2025_1478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验