Fan Wenjie, Zhu Chunliu, Wang Xingjie, Wang Huanlei, Zhu Yue, Chen Jingwei, Tian Weiqian, Wu Jingyi, Yu Guihua
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China.
Materials Science and Engineering Program and Walker Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
Nat Commun. 2025 Feb 2;16(1):1273. doi: 10.1038/s41467-025-56519-0.
Paring seawater electrolyte with zinc metal electrode has emerged as one of the most sustainable alternative solutions for offshore stationary energy storages owing to the intrinsic safety, extremely low cost, and unlimited water source. However, it remains a substantial challenge to stabilize zinc metal negative electrode in seawater electrolyte, given the presence of chloride ions and complex cations in seawater. Here, we reveal that chloride pitting initiates negative electrode corrosion and aggravates dendritic deposition, causing rapid battery failure. We then report a charge gradient negative electrode interface design that eliminates chloride-induced corrosion and enables a sustainable zinc plating/stripping performance beyond 1300 h in natural seawater electrolyte at 1 mA cm/1 mAh cm. The gradually strengthened negative charges formed via diffusion-controlled electrostatic complexation of biomass-derived polysaccharides serve to repel the unfavorable accumulation of chloride ions while simultaneously accelerating the diffusion of zinc ions. The seawater-based Zn | |NaVO·7HO cell delivers an initial areal discharge capacity of 5 mAh cm and operates over 500 cycles at 500 mA g.
将海水电解质与锌金属电极配对,因其本质安全性、极低的成本以及无限的水源,已成为海上固定储能最具可持续性的替代解决方案之一。然而,鉴于海水中存在氯离子和复杂阳离子,在海水电解质中稳定锌金属负极仍然是一项重大挑战。在此,我们揭示氯离子点蚀引发负极腐蚀并加剧枝晶沉积,导致电池迅速失效。然后,我们报告了一种电荷梯度负极界面设计,该设计消除了氯离子诱导的腐蚀,并在1 mA cm/1 mAh cm的自然海水电解质中实现了超过1300小时的可持续锌电镀/剥离性能。通过生物质衍生多糖的扩散控制静电络合形成的逐渐增强的负电荷,既排斥氯离子的不利积累,同时又加速锌离子的扩散。基于海水的Zn||NaVO·7HO电池的初始面积放电容量为5 mAh cm,在500 mA g下运行超过500个循环。