Suppr超能文献

通过快速离子导体保护层调控锌离子转移和界面行为来稳定锌金属负极

Stabilizing Zn Metal Anode Through Regulation of Zn Ion Transfer and Interfacial Behavior with a Fast Ion Conductor Protective Layer.

作者信息

Guo Na, Peng Zhi, Huo Wenjie, Li Yuehua, Liu Shude, Kang Ling, Wu Xianwen, Dai Lei, Wang Ling, Jun Seong Chan, He Zhangxing

机构信息

School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, P. R. China.

College of Textiles, Donghua University, Shanghai, 201620, P. R. China.

出版信息

Small. 2023 Nov;19(47):e2303963. doi: 10.1002/smll.202303963. Epub 2023 Jul 24.

Abstract

Aqueous Zn-ion batteries (AZIBs) attract intensive attention owing to their environmental friendliness, cost-effectiveness, innate safety, and high specific capacity. However, the practical applications of AZIBs are hindered by several adverse phenomena, including corrosion, Zn dendrites, and hydrogen evolution. Herein, a Zn anode decorated with a 3D porous-structured Na V (PO4) (NVP@Zn) is obtained, where the NVP reconstruct the electrolyte/anode interface. The resulting NVP@Zn anode can provide a large quantity of fast and stable channels, facilitating enhanced Zn ion deposition kinetics and regulating the Zn ions transport process through the ion confinement effect. The NASICON-type NVP protective layer promote the desolvation process due to its nanopore structure, thus effectively avoiding side reactions. Theoretical calculations indicate that the NVP@Zn electrode has a higher Zn ion binding energy and a higher migration barrier, which demonstrates that NVP protective layer can enhance Zn ion deposition kinetics and prevent the unfettered 2D diffusion of Zn ions. Therefore, the results show that NVP@Zn/MnO full cell can maintain a high specific discharge capacity of 168 mAh g and a high-capacity retention rate of 74.6% after cycling. The extraordinary results obtained with this strategy have confirmed the promising applications of NVP in high-performance AZIBs.

摘要

水系锌离子电池(AZIBs)因其环境友好、成本效益高、本质安全和高比容量而备受关注。然而,AZIBs的实际应用受到多种不利现象的阻碍,包括腐蚀、锌枝晶和析氢。在此,制备了一种用三维多孔结构的NaV(PO4)(NVP@Zn)修饰的锌负极,其中NVP重构了电解质/负极界面。所得的NVP@Zn负极能够提供大量快速且稳定的通道,促进锌离子沉积动力学增强,并通过离子限域效应调节锌离子传输过程。NASICON型NVP保护层因其纳米孔结构促进了去溶剂化过程,从而有效避免了副反应。理论计算表明,NVP@Zn电极具有更高的锌离子结合能和更高的迁移势垒,这表明NVP保护层能够增强锌离子沉积动力学并防止锌离子不受约束的二维扩散。因此,结果表明NVP@Zn/MnO全电池在循环后能够保持168 mAh g的高比放电容量和74.6%的高容量保持率。该策略所获得的优异结果证实了NVP在高性能AZIBs中的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验