Clauwaert Jim, McVey Zahra, Gupta Ramneek, Yannuzzi Ian, Basrur Venkatesha, Nesvizhskii Alexey I, Menschaert Gerben, Prensner John R
Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, MI, USA.
Nat Commun. 2025 Feb 2;16(1):1275. doi: 10.1038/s41467-025-56543-0.
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.
RNA翻译的生物学过程是细胞生命的基础,对人类疾病有着广泛的影响。由于该过程的复杂性和技术限制,准确描绘RNA翻译变异是一项重大挑战。在这里,我们介绍了RiboTIE,一种基于Transformer模型的方法,旨在加强对核糖体谱数据的分析。与现有方法不同,RiboTIE直接利用原始核糖体谱计数,以高精度和高灵敏度稳健地检测翻译的开放阅读框(ORF),并在各种数据集上进行了评估。我们证明,RiboTIE成功地重现了已知的发现,并为正常脑和髓母细胞瘤癌症样本中RNA翻译的调控提供了新的见解。我们的结果表明,RiboTIE是一种多功能工具,可以显著提高Ribo-Seq数据分析的准确性和深度,从而推进我们对蛋白质合成及其在疾病中的影响的理解。