Suppr超能文献

用于可见光响应光催化剂的氢氧化钴修饰二氧化钛纳米片

Cobalt Hydroxide Modification of TiO Nanosheets for Visible-Light-Responsive Photocatalysts.

作者信息

Hagiwara Hidehisa, Hayakawa Katsuaki, Ishitsuka Kazuki, Awaya Keisuke, Hatakeyama Kazuto, Ida Shintaro

机构信息

Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.

Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.

出版信息

ACS Omega. 2025 Jan 16;10(3):3101-3107. doi: 10.1021/acsomega.4c10161. eCollection 2025 Jan 28.

Abstract

To make full use of sunlight for water splitting reactions for hydrogen production, a visible-light-driven photocatalyst was developed by modifying TiO nanosheets with Co(OH). By adding an aqueous Co(NO)·6HO solution to a TiO nanosheet suspension, the TiO nanosheets aggregated and Co(OH) was formed. In the ultraviolet-visible (UV-vis) diffuse reflectance spectrum of the photocatalyst, new absorption bands attributable to Co(OH) and the interfacial charge transfer between Co(OH) and the TiO nanosheets appeared at around 600 and 400 nm, respectively. The photocatalytic activity of Co(OH)/TiO nanosheets was evaluated in terms of the O evolution reaction in an aqueous AgNO solution, finding that the reaction proceeds under visible light. Furthermore, the investigation of the wavelength dependence of the photocatalytic activity revealed that the photocatalytic reaction on Co(OH)/TiO nanosheets proceeds via Co(OH) photocatalysis and interfacial charge transfer between Co(OH) and the TiO nanosheets under visible light irradiation.

摘要

为了充分利用阳光进行水分解制氢反应,通过用Co(OH)修饰TiO纳米片开发了一种可见光驱动的光催化剂。通过向TiO纳米片悬浮液中加入Co(NO₃)₂·6H₂O水溶液,TiO纳米片聚集并形成Co(OH)₂。在光催化剂的紫外-可见(UV-vis)漫反射光谱中,分别在600和400 nm左右出现了归因于Co(OH)₂以及Co(OH)₂与TiO纳米片之间界面电荷转移的新吸收带。通过在AgNO₃水溶液中的析氧反应评估了Co(OH)₂/TiO纳米片的光催化活性,发现该反应在可见光下进行。此外,对光催化活性的波长依赖性研究表明,在可见光照射下,Co(OH)₂/TiO纳米片上的光催化反应通过Co(OH)₂光催化以及Co(OH)₂与TiO纳米片之间的界面电荷转移进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1641/11780558/a4ac8806d68a/ao4c10161_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验