Suppr超能文献

IMC-YOLO:一种用于滩涂环境中缢蛏辅助捕捞的检测模型。

IMC-YOLO: a detection model for assisted razor clam fishing in the mudflat environment.

作者信息

Xu Jianhao, Cao Lijie, Pan Lanlan, Li Xiankun, Zhang Lei, Gao Hongyong, Song Weibo

机构信息

College of Information Engineering, Dalian Ocean University, Dalian, China.

College of Mechanical and Power Engineering, Dalian Ocean University, Dalian, China.

出版信息

PeerJ Comput Sci. 2025 Jan 10;11:e2614. doi: 10.7717/peerj-cs.2614. eCollection 2025.

Abstract

In intertidal mudflat culture (IMC), the fishing efficiency and the degree of damage to nature have always been a pair of irreconcilable contradictions. To improve the efficiency of razor clam fishing and at the same time reduce the damage to the natural environment, in this study, a razor clam burrows dataset is established, and an intelligent razor clam fishing method is proposed, which realizes the accurate identification and counting of razor clam burrows by introducing the object detection technology into the razor clam fishing activity. A detection model called intertidal mudflat culture-You Only Look Once (IMC-YOLO) is proposed in this study by making improvements upon You Only Look Once version 8 (YOLOv8). In this study, firstly, at the end of the backbone network, the Iterative Attention-based Intrascale Feature Interaction (IAIFI) module module was designed and adopted to improve the model's focus on advanced features. Subsequently, to improve the model's effectiveness in detecting difficult targets such as razor clam burrows with small sizes, the head network was refactored. Then, FasterNet Block is used to replace the Bottleneck, which achieves more effective feature extraction while balancing detection accuracy and model size. Finally, the Three Branch Convolution Attention Mechanism (TBCAM) is proposed, which enables the model to focus on the specific region of interest more accurately. After testing, IMC-YOLO achieved mAP50, mAP50:95, and F1best of 0.963, 0.636, and 0.918, respectively, representing improvements of 2.2%, 3.5%, and 2.4% over the baseline model. Comparison with other mainstream object detection models confirmed that IMC-YOLO strikes a good balance between accuracy and numbers of parameters.

摘要

在潮间带泥滩养殖(IMC)中,蛏子捕捞效率与对自然的破坏程度一直是一对不可调和的矛盾。为提高蛏子捕捞效率并同时减少对自然环境的破坏,本研究建立了蛏子洞穴数据集,并提出了一种智能蛏子捕捞方法,该方法通过将目标检测技术引入蛏子捕捞活动中,实现了对蛏子洞穴的准确识别和计数。本研究通过对You Only Look Once版本8(YOLOv8)进行改进,提出了一种名为潮间带泥滩养殖-你只看一次(IMC-YOLO)的检测模型。在本研究中,首先,在骨干网络末端设计并采用了基于迭代注意力的尺度内特征交互(IAIFI)模块,以提高模型对高级特征的关注。随后,为提高模型检测小尺寸蛏子洞穴等困难目标的有效性,对头网络进行了重构。然后,使用FasterNet模块替换瓶颈模块,在平衡检测精度和模型大小的同时实现了更有效的特征提取。最后,提出了三分支卷积注意力机制(TBCAM),使模型能够更准确地关注特定感兴趣区域。经过测试,IMC-YOLO的mAP50、mAP50:95和F1best分别达到0.963、0.636和0.918,比基线模型分别提高了2.2%、3.5%和2.4%。与其他主流目标检测模型的比较证实,IMC-YOLO在准确性和参数数量之间取得了良好的平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25c/11784722/eefe6e13887c/peerj-cs-11-2614-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验