Alrowais Fadwa, Arasi Munya A, Alotaibi Saud S, Alonazi Mohammed, Marzouk Radwa, Salama Ahmed S
Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Department of Computer Science, Applied College, King Khalid University, RijalAlmaa, Saudi Arabia.
PeerJ Comput Sci. 2025 Jan 24;11:e2265. doi: 10.7717/peerj-cs.2265. eCollection 2025.
Artificial intelligence (AI) in music improvisation offers promising new avenues for developing human creativity. The difficulty of writing dynamic, flexible musical compositions in real time is discussed in this article. We explore using reinforcement learning (RL) techniques to create more interactive and responsive music creation systems. Here, the musical structures train an RL agent to navigate the complex space of musical possibilities to provide improvisations. The melodic framework in the input musical data is initially identified using bi-directional gated recurrent units. The lyrical concepts such as notes, chords, and rhythms from the recognised framework are transformed into a format suitable for RL input. The deep gradient-based reinforcement learning technique used in this research formulates a reward system that directs the agent to compose aesthetically intriguing and harmonically cohesive musical improvisations. The improvised music is further rendered in the MIDI format. The Bach Chorales dataset with six different attributes relevant to musical compositions is employed in implementing the present research. The model was set up in a containerised cloud environment and controlled for smooth load distribution. Five different parameters, such as pitch frequency (PF), standard pitch delay (SPD), average distance between peaks (ADP), note duration gradient (NDG) and pitch class gradient (PCG), are leveraged to assess the quality of the improvised music. The proposed model obtains +0.15 of PF, -0.43 of SPD, -0.07 of ADP and 0.0041 NDG, which is a better value than other improvisation methods.
音乐即兴创作中的人工智能为开发人类创造力提供了充满希望的新途径。本文讨论了实时创作动态、灵活音乐作品的难度。我们探索使用强化学习(RL)技术来创建更具交互性和响应性的音乐创作系统。在这里,音乐结构训练一个强化学习智能体在复杂的音乐可能性空间中导航,以提供即兴创作。输入音乐数据中的旋律框架最初使用双向门控循环单元进行识别。来自已识别框架的音符、和弦和节奏等抒情概念被转换为适合强化学习输入的格式。本研究中使用的基于深度梯度的强化学习技术制定了一个奖励系统,引导智能体创作具有美学吸引力且和声连贯的音乐即兴作品。即兴创作的音乐进一步以MIDI格式呈现。在实施本研究时采用了具有与音乐作品相关的六个不同属性的巴赫众赞歌数据集。该模型在容器化云环境中建立,并进行控制以实现平稳的负载分布。利用音高频率(PF)、标准音高延迟(SPD)、峰值之间的平均距离(ADP)、音符持续时间梯度(NDG)和音级梯度(PCG)这五个不同参数来评估即兴创作音乐的质量。所提出的模型获得了PF为 +0.15、SPD为 -0.43、ADP为 -0.07 和 NDG为0.0041,这比其他即兴创作方法的值更好。