Suppr超能文献

用于酒店预订取消预测的动态时间强化学习和策略增强长短期记忆网络

Dynamic temporal reinforcement learning and policy-enhanced LSTM for hotel booking cancellation prediction.

作者信息

Xiao Junhua, Abidin Shahriman Zainal, Vermol Verly Veto, Gong Bei

机构信息

Gongqing College of Nanchang University, Jiangxi, China.

Universiti Teknologi MARA, Shah Alam, Malaysia.

出版信息

PeerJ Comput Sci. 2024 Dec 5;10:e2442. doi: 10.7717/peerj-cs.2442. eCollection 2024.

Abstract

The global tourism industry is expanding rapidly, making effective management of hotel booking cancellations crucial for improving service and efficiency. Existing models, based on static data assumptions and fixed parameters, fail to capture dynamic changes and temporal trends. Real-world cancellation decisions are influenced by factors such as seasonal variations, market demand fluctuations, holidays, and special events, which cause significant changes in cancellation rates. Traditional models struggle to adjust dynamically to these changes. This article proposes a novel approach using deep reinforcement learning techniques for predicting hotel booking cancellations over time. We introduce a framework that combines dynamic temporal reinforcement learning with policy-enhanced LSTM, capturing temporal dynamics and leveraging multi-source information to improve prediction accuracy and stability. Our results show that the proposed model significantly outperforms traditional methods, achieving over 95.9% prediction accuracy, a model stability of 0.98, an F1 Score approaching 1, and a mutual information score of approximately 0.93. These results validate the model's effectiveness and generalization across diverse data sources. This study provides an innovative and efficient solution for managing hotel booking cancellations, demonstrating the potential of deep reinforcement learning in handling complex prediction tasks.

摘要

全球旅游业正在迅速扩张,因此有效管理酒店预订取消对于提高服务和效率至关重要。基于静态数据假设和固定参数的现有模型无法捕捉动态变化和时间趋势。现实世界中的取消决策受到季节变化、市场需求波动、节假日和特殊活动等因素的影响,这些因素会导致取消率发生显著变化。传统模型难以动态适应这些变化。本文提出了一种使用深度强化学习技术来随时间预测酒店预订取消情况的新方法。我们引入了一个将动态时间强化学习与策略增强型长短期记忆网络相结合的框架,捕捉时间动态并利用多源信息来提高预测准确性和稳定性。我们的结果表明,所提出的模型显著优于传统方法,实现了超过95.9%的预测准确率、0.98的模型稳定性、接近1的F1分数和约0.93的互信息分数。这些结果验证了该模型在不同数据源上的有效性和泛化能力。本研究为管理酒店预订取消提供了一种创新且高效的解决方案,展示了深度强化学习在处理复杂预测任务方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc34/11784724/fa2deac59d20/peerj-cs-10-2442-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验