Suppr超能文献

FedDL:用于增强糖尿病视网膜病变检测与分类的个性化联邦深度学习

FedDL: personalized federated deep learning for enhanced detection and classification of diabetic retinopathy.

作者信息

Bhulakshmi Dasari, Rajput Dharmendra Singh

机构信息

School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

出版信息

PeerJ Comput Sci. 2024 Dec 23;10:e2508. doi: 10.7717/peerj-cs.2508. eCollection 2024.

Abstract

Diabetic retinopathy (DR) is a condition that can lead to vision loss or blindness and is an unavoidable consequence of diabetes. Regular eye examinations are essential to maintaining a healthy retina and avoiding eye damage. In developing countries with a shortage of ophthalmologists, it is important to find an easier way to assess fundus photographs taken by different optometrists. Manual grading of DR is time-consuming and prone to human error. It is also crucial to securely exchange patients' fundus image data with hospitals worldwide while maintaining confidentiality in real time. Deep learning (DL) techniques can enhance the accuracy of diagnosing DR. Our primary goal is to develop a system that can monitor various medical facilities while ensuring privacy during the training of DL models. This is made possible through federated learning (FL), which allows for the sharing of parameters instead of actual data, employing a decentralized training approach. We are proposing federated deep learning (FedDL) in FL, a research paradigm that allows for collective training of DL models without exposing clinical information. In this study, we examined five important models within the FL framework, effectively distinguishing between DR stages with the following accuracy rates: 94.66%, 82.07%, 92.19%, 80.02%, and 91.81%. Our study involved five clients, each contributing unique fundus images sourced from publicly available databases, including the Indian Diabetic Retinopathy Image Dataset (IDRiD). To ensure generalization, we used the Structured Analysis of the Retina (STARE) dataset to train the ResNet50 model in a decentralized learning environment in FL. The results indicate that implementing these algorithms in an FL environment significantly enhances privacy and performance compared to conventional centralized learning methods.

摘要

糖尿病性视网膜病变(DR)是一种可导致视力丧失或失明的疾病,是糖尿病不可避免的后果。定期进行眼部检查对于维持视网膜健康和避免眼部损伤至关重要。在眼科医生短缺的发展中国家,找到一种更简便的方法来评估不同验光师拍摄的眼底照片非常重要。DR的人工分级既耗时又容易出现人为误差。在实时保持保密性的同时,安全地与全球各地的医院交换患者的眼底图像数据也至关重要。深度学习(DL)技术可以提高DR诊断的准确性。我们的主要目标是开发一个系统,该系统可以监控各种医疗设施,同时在DL模型训练期间确保隐私。这通过联邦学习(FL)得以实现,联邦学习允许共享参数而非实际数据,采用分散式训练方法。我们在FL中提出了联邦深度学习(FedDL),这是一种研究范式,允许在不暴露临床信息的情况下对DL模型进行集体训练。在本研究中,我们在FL框架内研究了五个重要模型,以以下准确率有效区分DR阶段:94.66%、82.07%、92.19%、80.02%和91.81%。我们的研究涉及五个客户端,每个客户端贡献来自公开可用数据库(包括印度糖尿病性视网膜病变图像数据集(IDRiD))的独特眼底图像。为确保泛化能力,我们使用视网膜结构分析(STARE)数据集在FL的分散式学习环境中训练ResNet50模型。结果表明,与传统的集中式学习方法相比,在FL环境中实施这些算法可显著提高隐私性和性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d8/11784742/f519fd88cbd9/peerj-cs-10-2508-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验