Sánchez Reyna Ana Gabriela, Mendoza-Gonzalez Ricardo, Luna-García Huizilopoztli, Celaya Padilla José María, Morgan Benita Jorge Alejandro, Espino-Salinas Carlos H, Galván-Tejada Jorge I, Rondon David, Villalba-Condori Klinge
Systems and Computing Department, TecNM/Technological Institute of Aguascalientes, Aguascalientes, Aguascalientes, Mexico.
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico.
PeerJ Comput Sci. 2024 Dec 12;10:e2437. doi: 10.7717/peerj-cs.2437. eCollection 2024.
Alzheimer's disease (AD) is a serious neurodegenerative disorder that causes incurable and irreversible neuronal loss and synaptic dysfunction. The progress of this disease is gradual and depending on the stage of its detection, only its progression can be treated, reducing the most aggressive symptoms and the speed of its neurodegenerative progress. This article proposes an early detection model for the diagnosis of AD by performing analyses in Alzheimer's progression patient datasets, provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI), including only neuropsychological assessments and making use of feature selection techniques and machine learning models. The focus of this research is to build an ensemble machine learning model capable of early detection of a patient with Alzheimer's or a cognitive state that leads to it, based on their results in neuropsychological assessments identified as highly relevant for the detection of Alzheimer's. The proposed approach for the detection of AD is presented with the inclusion of the feature selection technique recursive feature elimination (RFE) and the Akaike Information Criterion (AIC), the ensemble model consists of logistic regression (LR), artificial neural networks (ANN), support vector machines (SVM), K-nearest neighbors (KNN) and nearest centroid (Nearcent). The datasets downloaded from ADNI were divided into 13 subsets including: cognitively normal (CN) subjective memory concern (SMC), CN early mild cognitive impairment (EMCI), CN late mild cognitive impairment (LMCI), CN AD, SMC EMCI, SMC LMCI, SMC AD, EMCI LMCI, EMCI AD, LMCI AD, MCI AD, CN AD and CN MCI. From all the feature results, a custom model was created using RFE, AIC and testing each model. This work presents a customized model for a backend platform to perform one-versus-all analysis and provide a basis for early diagnosis of Alzheimer's at its current stage.
阿尔茨海默病(AD)是一种严重的神经退行性疾病,会导致无法治愈且不可逆转的神经元丧失和突触功能障碍。这种疾病的进展是渐进性的,并且根据其检测阶段,只能对其进展进行治疗,减轻最严重的症状以及减缓其神经退行性进展的速度。本文通过对阿尔茨海默病神经影像倡议(ADNI)提供的阿尔茨海默病进展患者数据集进行分析,提出了一种用于AD诊断的早期检测模型,该数据集仅包括神经心理学评估,并利用特征选择技术和机器学习模型。本研究的重点是基于被确定为与AD检测高度相关的神经心理学评估结果,构建一个能够早期检测出患有阿尔茨海默病或导致该病的认知状态的患者的集成机器学习模型。所提出的AD检测方法包括特征选择技术递归特征消除(RFE)和赤池信息准则(AIC),集成模型由逻辑回归(LR)、人工神经网络(ANN)、支持向量机(SVM)、K近邻(KNN)和最近质心(Nearcent)组成。从ADNI下载的数据集被分为13个子集,包括:认知正常(CN)、主观记忆问题(SMC)、CN 早期轻度认知障碍(EMCI)、CN 晚期轻度认知障碍(LMCI)、CN AD、SMC EMCI、SMC LMCI、SMC AD、EMCI LMCI、EMCI AD,、LMCI AD、轻度认知障碍(MCI) AD、CN AD和CN MCI。根据所有特征结果,使用RFE、AIC创建了一个定制模型并对每个模型进行测试。这项工作为后端平台提出了一个定制模型,以进行一对多分析,并为当前阶段阿尔茨海默病的早期诊断提供依据。