Suppr超能文献

机器学习利用病史、载脂蛋白E基因型和神经心理学评估预测从正常衰老到轻度认知障碍的转变。

Machine Learning Predicts Conversion from Normal Aging to Mild Cognitive Impairment Using Medical History, APOE Genotype, and Neuropsychological Assessment.

作者信息

Prabhakaran Divya, Grant Caroline, Pedraza Otto, Caselli Richard, Athreya Arjun P, Chandler Melanie

机构信息

Center for Individualized Medicine, Mayo Clinic, Jacksonville, FL, USA.

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.

出版信息

J Alzheimers Dis. 2024;98(1):83-94. doi: 10.3233/JAD-230556.

Abstract

BACKGROUND

Identifying individuals at risk for mild cognitive impairment (MCI) is of urgent clinical need.

OBJECTIVE

This study aimed to determine whether machine learning approaches could harness longitudinal neuropsychology measures, medical data, and APOEɛ4 genotype to identify individuals at risk of MCI 1 to 2 years prior to diagnosis.

METHODS

Data from 676 individuals who participated in the 'APOE in the Predisposition to, Protection from and Prevention of Alzheimer's Disease' longitudinal study (N = 66 who converted to MCI) were utilized in supervised machine learning algorithms to predict conversion to MCI.

RESULTS

A random forest algorithm predicted conversion 1-2 years prior to diagnosis with 97% accuracy (p = 0.0026). The global minima (each individual's lowest score) of memory measures from the 'Rey Auditory Verbal Learning Test' and the 'Selective Reminding Test' were the strongest predictors.

CONCLUSIONS

This study demonstrates the feasibility of using machine learning to identify individuals likely to convert from normal cognition to MCI.

摘要

背景

识别轻度认知障碍(MCI)风险个体具有迫切的临床需求。

目的

本研究旨在确定机器学习方法能否利用纵向神经心理学测量、医学数据和APOEɛ4基因型来识别在诊断前1至2年有MCI风险的个体。

方法

来自676名参与“载脂蛋白E在阿尔茨海默病的易感性、保护和预防中的作用”纵向研究的个体的数据(N = 66名转化为MCI者)被用于监督机器学习算法中,以预测向MCI的转化。

结果

随机森林算法在诊断前1至2年预测转化的准确率为97%(p = 0.0026)。“雷伊听觉词语学习测验”和“选择性提醒测验”中记忆测量的全局最小值(每个个体的最低分数)是最强的预测因子。

结论

本研究证明了使用机器学习识别可能从正常认知转化为MCI个体的可行性。

相似文献

2
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
7
9
Time Course and Severity of Cognitive Changes as a Function of Aβ Positivity and Genotype in Alzheimer Disease.
Neurology. 2025 Jul 22;105(2):e213853. doi: 10.1212/WNL.0000000000213853. Epub 2025 Jun 27.

引用本文的文献

1
Synthetic data analysis for early detection of Alzheimer progression through machine learning algorithms.
PeerJ Comput Sci. 2024 Dec 12;10:e2437. doi: 10.7717/peerj-cs.2437. eCollection 2024.

本文引用的文献

2
The effectiveness and value of aducanumab for Alzheimer's disease.
J Manag Care Spec Pharm. 2021 Nov;27(11):1613-1617. doi: 10.18553/jmcp.2021.27.11.1613.
4
Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review.
Med Image Anal. 2021 Jan;67:101848. doi: 10.1016/j.media.2020.101848. Epub 2020 Oct 6.
5
Objective subtle cognitive difficulties predict future amyloid accumulation and neurodegeneration.
Neurology. 2020 Jan 28;94(4):e397-e406. doi: 10.1212/WNL.0000000000008838. Epub 2019 Dec 30.
6
Neuropsychological decline up to 20 years before incident mild cognitive impairment.
Alzheimers Dement. 2020 Mar;16(3):512-523. doi: 10.1016/j.jalz.2019.09.085. Epub 2020 Jan 6.
7
Augmentation of Physician Assessments with Multi-Omics Enhances Predictability of Drug Response: A Case Study of Major Depressive Disorder.
IEEE Comput Intell Mag. 2018 Aug;13(3):20-31. doi: 10.1109/MCI.2018.2840660. Epub 2018 Jul 20.
8
How early can we diagnose Alzheimer disease (and is it sufficient)? The 2017 Wartenberg lecture.
Neurology. 2018 Aug 28;91(9):395-402. doi: 10.1212/WNL.0000000000006088. Epub 2018 Aug 8.
9
Neuropsychological Profiles and Trajectories in Preclinical Alzheimer's Disease.
J Int Neuropsychol Soc. 2018 Aug;24(7):693-702. doi: 10.1017/S135561771800022X. Epub 2018 Apr 30.
10
NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease.
Alzheimers Dement. 2018 Apr;14(4):535-562. doi: 10.1016/j.jalz.2018.02.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验