Suppr超能文献

用于面部表情识别的深度卷积神经网络架构。

Deep convolutional neural network architecture for facial emotion recognition.

作者信息

Pruthviraja Dayananda, Mohan Kumar Ujjwal, Parameswaran Sunil, Guna Chowdary Vemulapalli, Bharadwaj Varun

机构信息

Information Technology, Manipal Insitute of Technology, Manipal Academy of Higher Education, Bengaluru, Karnataka, India.

Department of Computer Science and Engineering, PES University, Bengaluru, Karnataka, India.

出版信息

PeerJ Comput Sci. 2024 Dec 17;10:e2339. doi: 10.7717/peerj-cs.2339. eCollection 2024.

Abstract

Facial emotion detection is crucial in affective computing, with applications in human-computer interaction, psychological research, and sentiment analysis. This study explores how deep convolutional neural networks (DCNNs) can enhance the accuracy and reliability of facial emotion detection by focusing on the extraction of detailed facial features and robust training techniques. Our proposed DCNN architecture uses its multi-layered design to automatically extract detailed facial features. By combining convolutional and pooling layers, the model effectively captures both subtle facial details and higher-level emotional patterns. Extensive testing on the benchmark Fer2013Plus dataset shows that our DCNN model outperforms traditional methods, achieving high accuracy in recognizing a variety of emotions. Additionally, we explore transfer learning techniques, showing that pre-trained DCNNs can effectively handle specific emotion recognition tasks even with limited labeled data.Our research focuses on improving the accuracy of emotion detection, demonstrating the model's capability to capture emotion-related facial cues through detailed feature extraction. Ultimately, this work advances facial emotion detection, with significant applications in various human-centric technological fields.

摘要

面部表情检测在情感计算中至关重要,在人机交互、心理学研究和情感分析等领域都有应用。本研究探讨了深度卷积神经网络(DCNN)如何通过专注于详细面部特征的提取和强大的训练技术来提高面部表情检测的准确性和可靠性。我们提出的DCNN架构利用其多层设计自动提取详细的面部特征。通过结合卷积层和池化层,该模型有效地捕捉了微妙的面部细节和更高层次的情感模式。在基准Fer2013Plus数据集上的广泛测试表明,我们的DCNN模型优于传统方法,在识别各种情感方面实现了高精度。此外,我们还探索了迁移学习技术,表明预训练的DCNN即使在标记数据有限的情况下也能有效处理特定的情感识别任务。我们的研究专注于提高情感检测的准确性,展示了该模型通过详细特征提取捕捉与情感相关的面部线索的能力。最终,这项工作推动了面部表情检测的发展,在各种以人类为中心的技术领域具有重要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3fa/11784769/9d3a8cc4d832/peerj-cs-10-2339-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验