Suppr超能文献

汇聚流介导的间充质力驱动胚胎前肠收缩和分裂。

Convergent flow-mediated mesenchymal force drives embryonic foregut constriction and splitting.

作者信息

Yan Rui, Hoffmann Ludwig A, Oikonomou Panagiotis, Li Deng, Lee ChangHee, Gill Hasreet, Mongera Alessandro, Nerurkar Nandan L, Mahadevan L, Tabin Clifford J

机构信息

Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

bioRxiv. 2025 Jan 23:2025.01.22.634318. doi: 10.1101/2025.01.22.634318.

Abstract

The transformation of a two-dimensional epithelial sheet into various three-dimensional structures is a critical process in generating the diversity of animal forms. Previous studies of epithelial folding have revealed diverse mechanisms driven by epithelium-intrinsic or -extrinsic forces. Yet little is known about the biomechanical basis of epithelial splitting, which involves extreme folding and eventually a topological transition breaking the epithelial tube. Here, we leverage tracheal-esophageal separation (TES), a critical and highly conserved morphogenetic event during tetrapod embryogenesis, as a model system for interrogating epithelial tube splitting both in vivo and ex vivo. Comparing TES in chick and mouse embryos, we identified an evolutionarily conserved, compressive force exerted by the mesenchyme surrounding the epithelium, as being necessary to drive epithelial constriction and splitting. The compressive force is mediated by localized convergent flow of mesenchymal cells towards the epithelium. We further found that Sonic Hedgehog (SHH) secreted by the epithelium functions as an attractive cue for mesenchymal cells. Removal of the mesenchyme, inhibition of cell migration, or loss of SHH signaling all abrogate TES, which can be rescued by externally applied pressure. These results unveil the biomechanical basis of epithelial splitting and suggest a mesenchymal origin of tracheal-esophageal birth defects.

摘要

二维上皮细胞层转变为各种三维结构是产生动物形态多样性的关键过程。先前关于上皮折叠的研究揭示了由上皮内在或外在力量驱动的多种机制。然而,对于上皮分裂的生物力学基础却知之甚少,上皮分裂涉及极端折叠并最终导致拓扑转变从而打破上皮管。在这里,我们利用气管 - 食管分离(TES),这是四足动物胚胎发育过程中一个关键且高度保守的形态发生事件,作为一个在体内和体外研究上皮管分裂的模型系统。通过比较鸡和小鼠胚胎中的TES,我们确定了上皮周围间充质施加的一种进化上保守的压缩力,它是驱动上皮收缩和分裂所必需的。这种压缩力由间充质细胞向上皮的局部汇聚流介导。我们进一步发现上皮分泌的音猬因子(SHH)作为间充质细胞的一种吸引信号。去除间充质、抑制细胞迁移或SHH信号缺失都会消除TES,而外部施加压力可以挽救这种情况。这些结果揭示了上皮分裂的生物力学基础,并提示气管 - 食管出生缺陷的间充质起源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfa5/11785243/59193ed7af85/nihpp-2025.01.22.634318v1-f0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验