Suppr超能文献

单细胞 RNA-Seq 数据中细胞间通讯推断方法和资源的比较。

Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data.

机构信息

Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany.

Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany.

出版信息

Nat Commun. 2022 Jun 9;13(1):3224. doi: 10.1038/s41467-022-30755-0.

Abstract

The growing availability of single-cell data, especially transcriptomics, has sparked an increased interest in the inference of cell-cell communication. Many computational tools were developed for this purpose. Each of them consists of a resource of intercellular interactions prior knowledge and a method to predict potential cell-cell communication events. Yet the impact of the choice of resource and method on the resulting predictions is largely unknown. To shed light on this, we systematically compare 16 cell-cell communication inference resources and 7 methods, plus the consensus between the methods' predictions. Among the resources, we find few unique interactions, a varying degree of overlap, and an uneven coverage of specific pathways and tissue-enriched proteins. We then examine all possible combinations of methods and resources and show that both strongly influence the predicted intercellular interactions. Finally, we assess the agreement of cell-cell communication methods with spatial colocalisation, cytokine activities, and receptor protein abundance and find that predictions are generally coherent with those data modalities. To facilitate the use of the methods and resources described in this work, we provide LIANA, a LIgand-receptor ANalysis frAmework as an open-source interface to all the resources and methods.

摘要

单细胞数据(尤其是转录组学数据)的日益普及,激发了人们对细胞间通讯推断的浓厚兴趣。为此,许多计算工具被开发出来。它们中的每一个都由细胞间相互作用的资源和预测潜在细胞间通讯事件的方法组成。然而,资源和方法的选择对预测结果的影响在很大程度上是未知的。为了阐明这一点,我们系统地比较了 16 种细胞间通讯推断资源和 7 种方法,以及方法预测之间的共识。在这些资源中,我们发现很少有独特的相互作用,存在不同程度的重叠,以及特定途径和组织富集蛋白的覆盖不均匀。然后,我们检查了所有可能的方法和资源组合,并表明这两者都强烈影响预测的细胞间相互作用。最后,我们评估了细胞间通讯方法与空间共定位、细胞因子活性和受体蛋白丰度的一致性,发现预测结果通常与这些数据模式一致。为了方便使用本文中描述的方法和资源,我们提供了 LIANA,即一个配体-受体分析框架,作为与所有资源和方法的开源接口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3123/9184522/e16e52e4ec89/41467_2022_30755_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验