Hao Stephanie, Tomic Ivan, Lindsey Benjamin B, Jagne Ya Jankey, Hoschler Katja, Meijer Adam, Quiroz Juan Manuel Carreño, Meade Philip, Sano Kaori, Peno Chikondi, Costa-Martins André G, Bogaert Debby, Kampmann Beate, Nakaya Helder, Krammer Florian, de Silva Thushan I, Tomic Adriana
Atomic lab, The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University; Boston, MA, US.
The Florey Institute of Infection and NIHR Sheffield Biomedical Research Centre, University of Sheffield; Sheffield, UK.
bioRxiv. 2025 Jan 23:2025.01.22.634302. doi: 10.1101/2025.01.22.634302.
Predicting individual vaccine responses remains a significant challenge due to the complexity and variability of immune processes. To address this gap, we developed , an open-source, data-driven framework implemented as an R package specifically designed for all systems vaccinologists seeking to analyze and predict immunological outcomes across diverse vaccination settings. Leveraging one of the most comprehensive live attenuated influenza vaccine (LAIV) datasets to date - 244 Gambian children enrolled in a phase 4 immunogenicity study - integrates humoral, mucosal, cellular, transcriptomic, and microbiological parameters collected before and after vaccination, providing an unprecedentedly holistic view of LAIV-induced immunity. Through advanced dimensionality reduction, clustering, and predictive modeling, immunaut identifies distinct immunophenotypic responder profiles and their underlying baseline determinants. In this study, delineated three immunophenotypes: (1) CD8 T-cell responders, marked by strong baseline mucosal immunity and extensive prior influenza virus exposure that boosts memory CD8 T-cell responses, without generating influenza virus-specific antibody responses; (2) Mucosal responders, characterized by pre-existing systemic influenza A virus immunity (specifically to H3N2) and stable epithelial integrity, leading to potent mucosal IgA expansions and subsequent seroconversion to influenza B virus; and (3) Systemic, broad influenza A virus responders, who start with relatively naive immunity and leverage greater initial viral replication to drive broad systemic antibody responses against multiple influenza A virus variants beyond those included in the LAIV vaccine. By integrating pathway-level analysis, model-derived contribution scores, and hierarchical decision rules, elucidates how distinct immunological landscapes shape each response trajectory and how key baseline features, including pre-existing immunity, mucosal preparedness, and cellular support, dictate vaccine outcomes. Collectively, these findings emphasize the power of integrative, predictive frameworks to advance precision vaccinology, and highlight as a versatile, community-available resource for optimizing immunization strategies across diverse populations and vaccine platforms.
由于免疫过程的复杂性和变异性,预测个体疫苗反应仍然是一项重大挑战。为了弥补这一差距,我们开发了一个开源的、数据驱动的框架,该框架作为一个R包实现,专门为所有系统疫苗学家设计,旨在分析和预测不同疫苗接种环境下的免疫结果。利用迄今为止最全面的减毒活流感疫苗(LAIV)数据集之一——244名参与4期免疫原性研究的冈比亚儿童——该框架整合了接种疫苗前后收集的体液、黏膜、细胞、转录组和微生物学参数,提供了LAIV诱导免疫前所未有的整体视图。通过先进的降维、聚类和预测建模,immunaut识别出不同的免疫表型反应者概况及其潜在的基线决定因素。在这项研究中,immunaut描绘了三种免疫表型:(1)CD8 T细胞反应者,其特征是基线黏膜免疫强,且先前有广泛的流感病毒暴露,可增强记忆性CD8 T细胞反应,但不产生流感病毒特异性抗体反应;(2)黏膜反应者,其特征是预先存在的甲型流感病毒免疫力(特别是对H3N2)和稳定的上皮完整性,导致强效的黏膜IgA扩增,随后血清转化为乙型流感病毒;(3)全身性、广泛的甲型流感病毒反应者,他们开始时免疫相对幼稚,并利用更大的初始病毒复制来驱动针对多种甲型流感病毒变体的广泛全身性抗体反应,这些变体超出了LAIV疫苗所包含的范围。通过整合通路水平分析、模型衍生的贡献分数和分层决策规则,immunaut阐明了不同的免疫格局如何塑造每个反应轨迹,以及关键的基线特征,包括预先存在的免疫力、黏膜准备状态和细胞支持,如何决定疫苗结果。总的来说,这些发现强调了综合预测框架在推进精准疫苗学方面的力量,并突出了immunaut作为一种通用的、社区可用的资源,可用于优化不同人群和疫苗平台的免疫策略。