Fries Lauren E, Grullon Gabriel, Berk-Rauch Hanna E, Chakravarti Aravinda, Chatterjee Sumantra
Center for Human Genetics & Genomics, New York University Grossman School of Medicine, New York, NY 10016.
Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016.
bioRxiv. 2025 Jan 23:2025.01.23.634550. doi: 10.1101/2025.01.23.634550.
Coding and enhancer variants of the receptor tyrosine kinase gene contribute to ~50% of Hirschsprung disease (HSCR) risk, a congenital disorder of disrupted enteric nervous system (ENS) development. The greatest contribution of this risk is from a common variant (rs2435357) in an ENS-active, SOX10-bound enhancer (MCS+9.7) that reduces gene expression and triggers expression changes in other ENS genes in the human fetal gut. To uncover the cellular basis of -mediated aganglionosis, we used CRISPR/Cas9 to delete (Δ) the homologous mouse enhancer (mcs+9.7). We used single cell RNA sequencing and high-resolution immunofluorescence to demonstrate four significant features of the developing E14.5 gut of Δmcs+9.7/Δmcs+9.7 embryos: (1) a small (5%) yet significant reduction in gene expression in only two major cell types - early differentiating neurons and fate-restricted inhibitory motor neurons; (2) no significant cellular loss in the ENS; and, (3) loss of expression of 19 cell cycle regulator genes suggesting a proliferative defect. To identify the functional threshold for normal ENS development, we also generated, in combination with the CFP null allele, (4) Δmcs+9.7/CFP double heterozygote mice which reduced gene expression in the ENS to 42% with severe loss of inhibitory motor neurons, an effect restricted to the hindgut and driven by proliferative loss. Thus, gene expression drives proliferation of ENS progenitor cells and hindgut-specific inhibitory motor neuron development, and that HSCR aganglionosis arises from a cascade of cellular defects triggered by >50% loss of function.
受体酪氨酸激酶基因的编码和增强子变异约占先天性巨结肠病(HSCR)风险的50%,HSCR是一种肠道神经系统(ENS)发育中断的先天性疾病。这种风险的最大贡献来自于一个常见变异(rs2435357),该变异位于一个ENS活性、SOX10结合的增强子(MCS+9.7)中,它会降低基因表达,并引发人类胎儿肠道中其他ENS基因的表达变化。为了揭示介导的无神经节细胞症的细胞基础,我们使用CRISPR/Cas9删除(Δ)同源小鼠增强子(mcs+9.7)。我们使用单细胞RNA测序和高分辨率免疫荧光来证明Δmcs+9.7/Δmcs+9.7胚胎发育中的E14.5肠道的四个显著特征:(1)仅在两种主要细胞类型——早期分化神经元和命运受限的抑制性运动神经元中,基因表达有小幅(5%)但显著的降低;(2)ENS中没有明显的细胞损失;以及,(3)19个细胞周期调节基因的表达缺失,提示存在增殖缺陷。为了确定正常ENS发育的功能阈值,我们还结合CFP无效等位基因生成了(4)Δmcs+9.7/CFP双杂合子小鼠,其将ENS中的基因表达降低至42%,同时抑制性运动神经元严重缺失,这种效应仅限于后肠,并由增殖损失驱动。因此,基因表达驱动ENS祖细胞的增殖和后肠特异性抑制性运动神经元的发育,并且HSCR无神经节细胞症源于功能丧失>50%引发的一系列细胞缺陷。