Suppr超能文献

使用可解释机器学习方法解码癌症和自闭症谱系障碍中PTEN错义突变的机制

Decoding Mechanisms of PTEN Missense Mutations in Cancer and Autism Spectrum Disorder using Interpretable Machine Learning Approaches.

作者信息

Yang Miao, Wang Jingran, Zhou Ziyun, Li Wentian, Verkhivker Gennady, Xiao Fei, Hu Guang

机构信息

MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China.

Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange 92866, California, United States.

出版信息

bioRxiv. 2025 Jan 21:2025.01.16.633473. doi: 10.1101/2025.01.16.633473.

Abstract

Missense mutations in oncogenic proteins that are concurrently associated with neurodevelopmental disorders have garnered significant attention. Phosphatase and tensin homolog (PTEN) serves as a paradigmatic model for mapping its mutational landscape and identifying genotypic predictors of distinct phenotypic outcomes, including cancer and autism spectrum disorder (ASD). Despite extensive research into the genotype-phenotype correlations of PTEN mutations, the mechanisms underlying the dual association of specific PTEN mutations with both cancer and ASD (PTEN-cancer/ASD mutations) remain elusive. This study introduces an integrative approach that combines machine learning (ML) with structural dynamics to elucidate the molecular effects of PTEN-cancer/ASD mutations. Analysis of biophysical and network biology-based signatures reveals a complex energetic and functional landscape. Subsequently, an ML model and corresponding integrated score were developed to classify and predict PTEN-cancer/ASD mutations, underscoring the significance of protein dynamics in predicting cellular phenotypes. Further molecular dynamics simulations demonstrated that PTEN-cancer/ASD mutations induce dynamic alterations characterized by open conformational changes restricted to the P loop and coupled with inter-domain allosteric regulation. This research aims to enhance the genotypic and phenotypic understanding of PTEN-cancer/ASD mutations through an interpretable ML model integrated with structural dynamics analysis. By identifying shared mechanisms between cancer and ASD, the findings pave the way for the development of novel therapeutic strategies.

摘要

与神经发育障碍同时相关的致癌蛋白中的错义突变已引起了广泛关注。磷酸酶和张力蛋白同源物(PTEN)是一个典型模型,用于描绘其突变图谱并确定不同表型结果(包括癌症和自闭症谱系障碍(ASD))的基因型预测指标。尽管对PTEN突变的基因型-表型相关性进行了广泛研究,但特定PTEN突变与癌症和ASD双重关联(PTEN-癌症/ASD突变)背后的机制仍不清楚。本研究引入了一种将机器学习(ML)与结构动力学相结合的综合方法,以阐明PTEN-癌症/ASD突变的分子效应。基于生物物理和网络生物学特征的分析揭示了一个复杂的能量和功能格局。随后,开发了一个ML模型和相应的综合评分,用于对PTEN-癌症/ASD突变进行分类和预测,强调了蛋白质动力学在预测细胞表型中的重要性。进一步的分子动力学模拟表明,PTEN-癌症/ASD突变会诱导动态改变,其特征是仅限于P环的开放构象变化,并伴有结构域间的变构调节。本研究旨在通过与结构动力学分析相结合的可解释ML模型,增强对PTEN-癌症/ASD突变的基因型和表型理解。通过确定癌症和ASD之间的共同机制,这些发现为开发新的治疗策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/439b/11785095/638cf0d8bb24/nihpp-2025.01.16.633473v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验