Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States.
Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio44195, United States.
J Phys Chem B. 2023 Jan 26;127(3):634-647. doi: 10.1021/acs.jpcb.2c06776. Epub 2023 Jan 10.
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tightly regulated dual-specificity phosphatase and key regulator of the PI3K/AKT/mTOR signaling pathway. PTEN phosphorylation at its carboxy-terminal tail (CTT) serine/threonine cluster negatively regulates its tumor suppressor function by inducing a stable, closed, and inactive conformation. Germline mutations predispose individuals to hamartoma tumor syndrome (PHTS), a rare inherited cancer syndrome and, intriguingly, one of the most common causes of autism spectrum disorder (ASD). However, the mechanistic details that govern phosphorylated CTT catalytic conformational dynamics in the context of PHTS-associated mutations are unknown. Here, we utilized a comparative protein structure network (PSN)-based approach to investigate PTEN CTT phosphorylation-induced conformational dynamics specific to PTEN-ASD compared to PTEN-cancer phenotypes. Results from our study show differences in structural flexibility, inter-residue contacts, and allosteric communication patterns mediated by CTT phosphorylation, differentiating PTEN-ASD and PTEN-cancer phenotypes. Further, we identified perturbations among global metapaths and community network connections within the active site and inter-domain regions, indicating the significance of these regions in transmitting information across the PSN. Together, our studies provide a mechanistic underpinning of allosteric regulation through the coupled interplay of CTT phosphorylation conformational dynamics in PTEN-ASD and PTEN-cancer mutations. Importantly, the detailed atomistic interactions and structural consequences of variants reveal potential allosteric druggable target sites as a viable and currently unexplored treatment approach for individuals with different PHTS-associated mutations.
PTEN(第 10 号染色体缺失的磷酸酶和张力蛋白同源物)是一种受严格调控的双特异性磷酸酶,是 PI3K/AKT/mTOR 信号通路的关键调节因子。PTEN 在其羧基末端尾巴(CTT)丝氨酸/苏氨酸簇上的磷酸化通过诱导稳定、封闭和非活性构象,负调控其肿瘤抑制功能。种系突变使个体易患错构瘤肿瘤综合征(PHTS),这是一种罕见的遗传性癌症综合征,也是自闭症谱系障碍(ASD)最常见的原因之一。然而,在与 PHTS 相关突变的背景下,控制磷酸化 CTT 催化构象动力学的机制细节尚不清楚。在这里,我们利用基于比较蛋白质结构网络(PSN)的方法,研究了与 PHTS 相关突变相比,PTEN-ASD 与 PTEN-癌症表型相关的 PTEN CTT 磷酸化诱导构象动力学的差异。我们的研究结果表明,PTEN-ASD 和 PTEN-癌症表型之间存在结构灵活性、残基间接触和 CTT 磷酸化介导的变构通讯模式的差异。此外,我们还发现了活性位点和域间区域内全局 metapaths 和社区网络连接的扰动,表明这些区域在 PSN 中传递信息的重要性。总之,我们的研究提供了通过 CTT 磷酸化构象动力学在 PTEN-ASD 和 PTEN-癌症突变中的偶联相互作用进行变构调节的机制基础。重要的是,变体的详细原子相互作用和结构后果揭示了潜在的变构药物靶标,作为一种可行且目前尚未探索的治疗方法,用于患有不同 PHTS 相关突变的个体。