Al-Fatlawi Ali, Hossen Md Ballal, de Paula Lopes Stella, Stewart A Francis, Schroeder Michael
Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden, Germany.
Comput Struct Biotechnol J. 2024 Dec 24;27:360-368. doi: 10.1016/j.csbj.2024.12.012. eCollection 2025.
Rad52, a highly conserved eukaryotic protein, plays a crucial role in DNA repair, particularly in double-strand break repair. Recent findings reveal that its distinct structural features, including a characteristic -sheet and -hairpin motif, are shared with the lambda phage single-strand annealing protein, Red, and other prokaryotic single-strand annealing proteins (SSAPs), indicating a common superfamily. Our analysis of over 10,000 SSAPs across all domains of life supports this hypothesis, confirming the presence of the characteristic motif despite variations in size and composition. We found that archaea, representing only 1% of the studied proteins, exhibit most of these variations as reflected by their spread across the phylogenetic tree, whereas eukaryotes exhibit only Rad52. By examining four representative archaeal SSAPs, we elucidate the structural relationship between eukaryotic and bacterial SSAPs, highlighting differences in -sheet size and -hairpin complexity. Furthermore, we identify an archaeal SSAP with a predicted structure nearly identical to human Rad52. Together with a screen of over 100 million unannotated proteins for potential SSAP candidates, our computational analysis complements the existing sequence and structural evidence supporting orthology among five SSAP families: Rad52, Red, RecT, Erf, and Sak3.
Rad52是一种高度保守的真核生物蛋白质,在DNA修复中发挥着关键作用,尤其是在双链断裂修复方面。最近的研究发现表明,它独特的结构特征,包括特征性的β折叠和β发夹基序,与λ噬菌体单链退火蛋白Red以及其他原核单链退火蛋白(SSAPs)相同,这表明它们属于一个共同的超家族。我们对生命所有领域中超过10000种SSAPs的分析支持了这一假设,证实了尽管大小和组成存在差异,但特征性基序依然存在。我们发现,仅占所研究蛋白质1%的古菌,如它们在系统发育树上的分布所示,呈现出这些差异中的大部分,而真核生物仅表现出Rad52。通过研究四种具有代表性的古菌SSAPs,我们阐明了真核生物和细菌SSAPs之间的结构关系,突出了β折叠大小和β发夹复杂性的差异。此外,我们鉴定出一种古菌SSAP,其预测结构与人类Rad52几乎相同。连同对超过1亿种未注释蛋白质进行潜在SSAP候选物筛选,我们的计算分析补充了现有的序列和结构证据,支持了五个SSAP家族(Rad52、Red、RecT、Erf和Sak3)之间的直系同源关系。