Suppr超能文献

迈向一种用于预测混沌系统动力学的物理引导机器学习方法。

Toward a physics-guided machine learning approach for predicting chaotic systems dynamics.

作者信息

Feng Liu, Liu Yang, Shi Benyun, Liu Jiming

机构信息

Department of Computer Science, Hong Kong Baptist University, Hong Kong, China.

College of Computer and Information Engineering, Nanjing Tech University, Nanjing, China.

出版信息

Front Big Data. 2025 Jan 17;7:1506443. doi: 10.3389/fdata.2024.1506443. eCollection 2024.

Abstract

Predicting the dynamics of chaotic systems is crucial across various practical domains, including the control of infectious diseases and responses to extreme weather events. Such predictions provide quantitative insights into the future behaviors of these complex systems, thereby guiding the decision-making and planning within the respective fields. Recently, data-driven approaches, renowned for their capacity to learn from empirical data, have been widely used to predict chaotic system dynamics. However, these methods rely solely on historical observations while ignoring the underlying mechanisms that govern the systems' behaviors. Consequently, they may perform well in short-term predictions by effectively fitting the data, but their ability to make accurate long-term predictions is limited. A critical challenge in modeling chaotic systems lies in their sensitivity to initial conditions; even a slight variation can lead to significant divergence in actual and predicted trajectories over a finite number of time steps. In this paper, we propose a novel Physics-Guided Learning (PGL) method, aiming at extending the scope of accurate forecasting as much as possible. The proposed method aims to synergize observational data with the governing physical laws of chaotic systems to predict the systems' future dynamics. Specifically, our method consists of three key elements: a data-driven component (DDC) that captures dynamic patterns and mapping functions from historical data; a physics-guided component (PGC) that leverages the governing principles of the system to inform and constrain the learning process; and a nonlinear learning component (NLC) that effectively synthesizes the outputs of both the data-driven and physics-guided components. Empirical validation on six dynamical systems, each exhibiting unique chaotic behaviors, demonstrates that PGL achieves lower prediction errors than existing benchmark predictive models. The results highlight the efficacy of our design of data-physics integration in improving the precision of chaotic system dynamics forecasts.

摘要

预测混沌系统的动态变化在包括传染病控制和应对极端天气事件在内的各个实际领域都至关重要。此类预测为这些复杂系统的未来行为提供了定量见解,从而指导各领域内的决策和规划。最近,以能够从经验数据中学习而闻名的数据驱动方法已被广泛用于预测混沌系统动态。然而,这些方法仅依赖历史观测,却忽略了支配系统行为的潜在机制。因此,它们可能通过有效拟合数据在短期预测中表现良好,但进行准确长期预测的能力有限。对混沌系统进行建模的一个关键挑战在于它们对初始条件的敏感性;即使是微小的变化也可能导致在有限数量的时间步长内实际轨迹和预测轨迹出现显著偏差。在本文中,我们提出了一种新颖的物理引导学习(PGL)方法,旨在尽可能扩大准确预测的范围。所提出的方法旨在将观测数据与混沌系统的支配物理定律相结合,以预测系统的未来动态。具体而言,我们的方法由三个关键要素组成:一个数据驱动组件(DDC),它从历史数据中捕捉动态模式和映射函数;一个物理引导组件(PGC),它利用系统的支配原理来指导和约束学习过程;以及一个非线性学习组件(NLC),它有效地综合数据驱动组件和物理引导组件的输出。对六个表现出独特混沌行为的动态系统进行的实证验证表明,PGL 比现有的基准预测模型具有更低的预测误差。结果突出了我们的数据 - 物理集成设计在提高混沌系统动态预测精度方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0e7/11782262/b6053c7e7a7e/fdata-07-1506443-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验