Suppr超能文献

物理信息神经网络整合房室模型分析 COVID-19 传播动力学。

Physics-Informed Neural Networks Integrating Compartmental Model for Analyzing COVID-19 Transmission Dynamics.

机构信息

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China.

Center for Global Health, Departments of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.

出版信息

Viruses. 2023 Aug 16;15(8):1749. doi: 10.3390/v15081749.

Abstract

Modelling and predicting the behaviour of infectious diseases is essential for early warning and evaluating the most effective interventions to prevent significant harm. Compartmental models produce a system of ordinary differential equations (ODEs) that are renowned for simulating the transmission dynamics of infectious diseases. However, the parameters in compartmental models are often unknown, and they can even change over time in the real world, making them difficult to determine. This study proposes an advanced artificial intelligence approach based on physics-informed neural networks (PINNs) to estimate time-varying parameters from given data for the compartmental model. Our proposed PINNs method captures the complex dynamics of COVID-19 by integrating a modified Susceptible-Exposed-Infectious-Recovered-Death (SEIRD) compartmental model with deep neural networks. Specifically, we modelled the system of ODEs as one network and the time-varying parameters as another network to address significant unknown parameters and limited data. Such structure of the PINNs method is in line with the prior epidemiological correlations and comprises the mismatch between available data and network output and the residual of ODEs. The experimental findings on real-world reported data data have demonstrated that our method robustly and accurately learns the dynamics and forecasts future states. Moreover, as more data becomes available, our proposed PINNs method can be successfully extended to other regions and infectious diseases.

摘要

传染病行为建模和预测对于早期预警和评估预防重大危害的最有效干预措施至关重要。房室模型产生了一组常微分方程(ODEs),这些方程以模拟传染病的传播动力学而闻名。然而,房室模型中的参数通常是未知的,甚至在现实世界中可能随时间变化,这使得它们难以确定。本研究提出了一种基于物理信息神经网络(PINNs)的先进人工智能方法,用于从给定数据中估计房室模型的时变参数。我们提出的 PINNs 方法通过将改进的易感-暴露-感染-恢复-死亡(SEIRD)房室模型与深度神经网络相结合,捕捉 COVID-19 的复杂动态。具体来说,我们将 ODE 系统建模为一个网络,将时变参数建模为另一个网络,以解决重要的未知参数和有限的数据。PINNs 方法的这种结构符合先前的流行病学相关性,并包含可用数据与网络输出之间的不匹配以及 ODE 的残差。基于真实报告数据的实验结果表明,我们的方法能够稳健且准确地学习动力学并预测未来状态。此外,随着更多数据的可用,我们提出的 PINNs 方法可以成功扩展到其他地区和传染病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb45/10459488/4fc5e7abb0e1/viruses-15-01749-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验