Suppr超能文献

基于显微血液图像检测急性髓系白血病的人工智能;系统评价与Meta分析

Artificial intelligence for the detection of acute myeloid leukemia from microscopic blood images; a systematic review and meta-analysis.

作者信息

Al-Obeidat Feras, Hafez Wael, Rashid Asrar, Jallo Mahir Khalil, Gador Munier, Cherrez-Ojeda Ivan, Simancas-Racines Daniel

机构信息

College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates.

Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt.

出版信息

Front Big Data. 2025 Jan 17;7:1402926. doi: 10.3389/fdata.2024.1402926. eCollection 2024.

Abstract

BACKGROUND

Leukemia is the 11 most prevalent type of cancer worldwide, with acute myeloid leukemia (AML) being the most frequent malignant blood malignancy in adults. Microscopic blood tests are the most common methods for identifying leukemia subtypes. An automated optical image-processing system using artificial intelligence (AI) has recently been applied to facilitate clinical decision-making.

AIM

To evaluate the performance of all AI-based approaches for the detection and diagnosis of acute myeloid leukemia (AML).

METHODS

Medical databases including PubMed, Web of Science, and Scopus were searched until December 2023. We used the "metafor" and "metagen" libraries in R to analyze the different models used in the studies. Accuracy and sensitivity were the primary outcome measures.

RESULTS

Ten studies were included in our review and meta-analysis, conducted between 2016 and 2023. Most deep-learning models have been utilized, including convolutional neural networks (CNNs). The common- and random-effects models had accuracies of 1.0000 [0.9999; 1.0001] and 0.9557 [0.9312, and 0.9802], respectively. The common and random effects models had high sensitivity values of 1.0000 and 0.8581, respectively, indicating that the machine learning models in this study can accurately detect true-positive leukemia cases. Studies have shown substantial variations in accuracy and sensitivity, as shown by the Q values and I statistics.

CONCLUSION

Our systematic review and meta-analysis found an overall high accuracy and sensitivity of AI models in correctly identifying true-positive AML cases. Future research should focus on unifying reporting methods and performance assessment metrics of AI-based diagnostics.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/prospero/#recordDetails, CRD42024501980.

摘要

背景

白血病是全球第11大常见癌症类型,急性髓系白血病(AML)是成人中最常见的恶性血液肿瘤。显微镜血液检测是识别白血病亚型的最常用方法。一种使用人工智能(AI)的自动化光学图像处理系统最近已被应用于辅助临床决策。

目的

评估所有基于AI的方法在急性髓系白血病(AML)检测和诊断中的性能。

方法

检索了包括PubMed、科学网和Scopus在内的医学数据库,检索截至2023年12月。我们使用R语言中的“metafor”和“metagen”库来分析研究中使用的不同模型。准确性和敏感性是主要结局指标。

结果

我们的综述和荟萃分析纳入了2016年至2023年间进行的10项研究。使用了大多数深度学习模型,包括卷积神经网络(CNN)。固定效应模型和随机效应模型的准确率分别为1.0000[0.9999;1.0001]和0.9557[0.9312,0.9802]。固定效应模型和随机效应模型的敏感性值分别为1.0000和0.8581,表明本研究中的机器学习模型可以准确检测真阳性白血病病例。研究表明,准确性和敏感性存在很大差异,如Q值和I统计量所示。

结论

我们的系统综述和荟萃分析发现,AI模型在正确识别真阳性AML病例方面总体具有较高的准确性和敏感性。未来的研究应侧重于统一基于AI的诊断的报告方法和性能评估指标。

系统综述注册

https://www.crd.york.ac.uk/prospero/#recordDetails,CRD42024501980。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78f1/11782132/556d5807b439/fdata-07-1402926-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验